NI 43-101 Technical Report Mineral Resources Estimate for the Reliquias Mine, Huancavelica-Peru

Report Date: March 27th, 2023 Effective Date: March 18th, 2023

Prepared for:

82 Richmond Street East Toronto, ON M5C 1P1, Canada

Prepared by:

Qualified Person Antonio Cruz, P. Geo. Registered Member MAIG

Qualified Person Gerardo Acuña, P. Eng. Registered Member FAusiMM

Table of Contents

1.	Summa	ry	10
	1.1.	Introduction	10
	1.2.	Property Description	10
	1.3.	History	10
	1.4.	Geology and Mineralization	11
	1.5.	Exploration	11
	1.6.	Drilling	12
	1.7.	Sample Preparation, Analysis and Security	
	1.8.	Data Verification	13
	1.9.	Mineral Resources Estimate	
	1.10.	Interpretation and Recommendations	15
	1.10.1.	Interpretation and Conclusions	15
	1.10.2.	Recommendations	
2.	Introdu	ction	19
	2.1.	Overview	
	2.2.	Terms of References	
	2.3.	Qualified Persons and Responsibilities	
	2.4.	Site Visit	20
	2.5.	Information Sources and References	20
	2.6.	Effective dates	20
3.	Relianc	e on Other Experts	22
4.	Propert	y Description and Location	23
	4.1.	Property Location	
	4.2.	Mining Tenures	
	4.2.1.	Mining claims and Concessions	23
	4.2.2.	Mining Right in Peru	
	4.2.3.	Mining Concession Titles	
	4.2.4.	Right of Validity and Penalties	30
	4.3.	Surface Rights	
	4.4.	Environmental Permits	
	4.5.	Other Permits	33
	4.6.	Agreements and Royalties	34
	4.6.1.	Royalties and Income Taxes	
5.	Access	ibility, Climate, Local Resources, Infrastructure and Physiography	35
	5.1.	Access	
	5.2.	Physiography	
	5.3.	Climate	
	5.4.	Local Resources and Infrastructure	
6.	History		39
	6.1.	Prior Ownership	
	6.2.	Exploration History	

	6.3.	Production and Historical Resources Estimate	40
7.	Geologi	ical Setting and Mineralization	42
	7.1.	Regional Geology	
	7.2.	Mio-Pliocene Metallogenic Belt of Southern Peru	
	7.3.	District Geology	
	7.4.	Property Geology	
	7.4.1.	Volcanic Rocks	
	7.4.2.	Intrusive Rocks	
	7.4.3.	Structural Setting	
	7.4.4.	Alteration	
	7.4.5.	Mineralization	
	7.4.6.	Polymetallic Veins	
8.	Deposit	: Types	51
9.	Explora	tion	53
	9.1.	Overview	53
	9.2.	Brownfield Exploration Targets	
	9.2.1.	Pozo Rico Zone	
	9.2.2.	Lira de Plata Zone	54
	9.2.3.	Sacasipuedes Zone	
	9.2.4.	Anabel Zone	57
	9.2.5.	Isabel Zone	58
	9.2.6.	Dollar Zone	
10.	Drilling.		61
	10.1.	Introduction	
	10.2.	2022 Programme	61
	10.3.	Drilling Methodology	
	10.4.	Core logging	65
11.	Sample	Preparation, Analysis and Security	67
	11.1.	Sample Preparation	67
	11.1.1.	Core Handling, Sampling and Security	
	11.1.2.	Channel Sample Collection Procedure	
	11.2.	Geochemical Analysis	
	11.2.1.	Sample Preparation, ALS Peru	
	11.2.2.	Geochemical Analysis, ALS Peru	69
	11.3.	Sample Security	69
	11.4.	Quality Control and Quality Assurance	69
	11.4.1.	Standard Reference Material Performance, Drill	
	11.4.2.	Standard Reference Material Performance, Channel	73
	11.4.3.	Blank Samples, Drilling Programme 2022	75
	11.4.4.	Blank Samples, Channel	
	11.4.5.	Duplicates, Drill Programme 2022	77
	11.4.6.	Channel Sampling Duplicates	
12.	Data Ve	rification	80

	12.1.	Drilling and Drill Hole Locations	
	12.2.	Diamond drill hole databases	
	12.3.	Logging, Sampling and Assaying Procedures	
	12.4.	Assay	
13.	Mineral F	Processing and Metallurgical Testing	82
14.	Mineral F	Resources Estimate	
	14.1.	Introduction	
	14.2.	Disclosure	
	14.3.	Estimation Methology	
	14.4.	Data Analysis	
	14.5.	Geological Model	
	14.6.	Exploratory Data Analysis	
	14.6.1.	Statistical Analysis	
	14.6.2.	Compositing	
	14.6.3.	Capping	
	14.7.	Variogram analysis	
	14.8.	Grade Estimation	
	14.8.1.	Block Size	110
	14.8.2.	Sample Search Parameters	
	14.8.3.	Dynamic Anisotropy	113
	14.8.4.	Density	113
	14.9.	Validation of the Estimate	
	14.9.1.	Visual Inspection	
	14.9.2.	Local Validation of the Estimate	115
	14.9.3.	Cross Validation	
	14.9.4.	Global Estimation Validation	
	14.10.	Mineral Resource Reporting	
	14.10.1.	Mineral Resource Classification	
	14.10.2.	Mineral Resource depletion	
	14.11.	Reasonable Prospects for Eventual Economic Extraction	
	14.11.1.	Net Smelter Royalty Returns	
	14.11.2.	Cut-UII	
4 5	14.12.		
15.		Reserve Estimate	
16.		lethod	
17.	Recovery	y Methods	124
18.	Project li	nfrastructure	124
19.	Market S	tudies and Contracts	
20.	Environn	nental Studies, Permitting and Social or Community Impact	124
21.	Capital a	nd Operating Costs	124
22.	Economi	ic Analysis	124
23.	Adjacent	Properties	124

24.	Other R	124	
25.	Interpre	125	
	25.1.	Mining Property, Surface Rights and Permits	
	25.2.	Geology and Exploration	
	25.3.	Drilling, Sample Preparation and Data Verification	
	25.4.	Mineral Resources	
	25.5.	Risks and Opportunities	
	25.5.1.	Opportunities	
	25.5.2.	Risk	
26.	Recomn	128	
	26.1.	Geology, Mineralization and Exploration	
	26.2.	Database, QA/QC and Resources estimates	
27.	Referen	ces	129
28.	Certifica	ates	130

List of Tables

Table 1-1 Exploration activities during the year 2022 in the surroundings of the Reliquias mine	12
Table 1-2 Mineral Resources for the polymetallic veins, effective date March 18th, 2023	14
Table 2-1 Authors of Current Report	20
Table 2-2 Acronyms	21
Table 4-1 Mineral Concessions, Titleholder: Sociedad Minera Reliquias S.A.C. Source: SMR	24
Table 4-2 List of environmental permits, source: Sociedad Minera Reliquias	33
Table 6-1 List of historical drilling and mineralized structures recognized in the Reliquias mine. Source: CMC	40
Table 6-2 Summary of the historical production records of the Corporacion Minera Castrovirreyna. Source: Socie Minera Reliquias	<i>dad</i> 41
Table 6-3 Historical mineral resources for the Reliquias Mine. Source: Sociedad Minera Reliquias	41
Table 10-1 Historical drilling carried out by Corporacion Minera Castrovirreyna. Source: CMC	61
Table 10-2 Location and targets for all drill holes of the 2022 Programme. Source: Sociedad Minera Reliquia	62
Table 11-1 Detailed results from standards used in 2022 Programme by Sociedad Minera Reliquias during the drilling programme. Source: The author.	70
Table 11-2 Detailed results of the SRM used in the channel sampling of Sociedad Minera Reliquias. Sources: The author	73
Table 11-3 Detailed summary of blank assays during the 2022 Programme. Source: The author	76
Table 11-4 Detailed summary of blank assays during the 2022 Mine's Sample. Sources: The author	76
Table 11-5 Duplicate Results for drill samples	77
Table 11-6 Detailed summary of field duplicate results in Mine's Sample	78
Table 13-1 List of minerals of the obtained samples.	82
Table 13-2 Head grades of working samples	82
Table 13-3 Conditions under which preliminary flotation tests were carried out by the Mercantil laboratory	83
Table 13-4 Results of preliminary flotation tests carried out by Mercantil laboratory	83
Table 14-1 Diamond drilling and channels available for mineral resource estimation	85
Table 14-2 List of structures mineralized by Atticus, where; p:principal structure, s:south, hw: hanging wall, fw: j wall, r: splay	foot 87
Table 14-3 Raw data for polymetallic veins. Source: The author	93
Table 14-4 Statistical summary for each composite vein. Source: SMR	97
Table 14-5 Topcut thresholds by vein	. 101
Table 14-6 Variogram model parameters	. 107
Table 14-7 Parameters of the block model for the Reliquias mine	. 110
Table 14-8 Parameters for the estimation of the veins of the Reliquias mine	. 112
Table 14-9 Statistical summary of the relics mine density tests	. 114
Table 14-10 Cross validation for each mineralized vein of the Reliquias mine.	. 116

Table 14-11 Statistical summary of the global validation for each vein of the Reliquias mine and without cut-off.	117
Table 14-12 Variable costs for extraction of polymetallic vein material from the Reliquias mine.	121
Table 14-13 Mineral Resources for the polymetallic veins, effective date March 18 th , 2023.	121
Table 14-14 Mineral Resources for the polymetallic veins, effective date March 18th, 2023.	123

List of Figures

Figure 4-1 Location map of the Reliquias Mina, Department of Huancavelica, Peru	23
Figure 4-2 Mining concessions, Reliquias Block. Source: Sociedad Minera Reliquias	28
Figure 4-3 Location of existing population centers in the surroundings of the Reliquias mine. Source: Sociedad Minera Reliquias	31
Figure 4-4 Map with the limits of the communities that own surface properties. Source: SMR	32
Figure 5-1 Main Access Routes to the Reliquias mine. Source: Sociedad Minera Reliquias.	35
Figure 5-2 Location of the main infrastructure at the Reliquias Mine. Source: Sociedad Minera Reliquias	37
Figure 5-3 Location of the main infrastructures located at the Caudalosa Mine. Source: Sociedad Minera Reliquias.	,
	37
Figure 7-1 Regional Geology. Sources: J. Wisw & D. Noble	43
Figure 7-2 District geologic map of the Reliquias Block. Source: INGEMMET	44
Figure 7-3 Local geology plan and geological cross section, showing the existing veins in the Reliquias block. Source Sociedad Minera Reliquias.	е: 46
Figure 7-4 Geological map and the main veins in and around the Reliquias mine. Source: Sociedad Minera Reliquia	s. 50
Figure 8-1 Schematic representation of epithermal deposits, intermediate sulphidation. prepared by SMR 2021, after Wang et al., (2019)	52
Figure 9-1 Exploration targets near Reliquias Mine. Source: Sociedad Minera Reliquias.	53
Figure 9-2 Plan map showing geochemistry of Pozo Rico zone. Source: Sociedad Minera Reliquias	54
Figure 9-3 Plan map showing the geochemical results and the main structures in the Lira de Plata zone. Source: Sociedad Minera Reliquias.	56
Figure 9-4 Plan map showing the geochemical results and the main structures in the Sacasipuedes zone, Source: Sociedad Minera Reliquias.	57
Figure 9-5 Plan map showing the geochemical results and the main structures in the Anabel zone. Source: Socieda Minera Reliquias	d 58
Figure 9-6 Plan map showing the geochemical results and the main structures in the Isabel zone. Source: Sociedad Minera Reliquias	59
Figure 9-7 Plan map showing the geochemical results and the main structures in the Dollar zone. Source: Sociedad Minera Reliquias	60
Figure 10-1 Map with the locations of the drilling of the 2022 programme and the historical drilling in the Reliquia mine. Source: Sociedad Minera Reliquias.	s 64
Figure 10-2 Log sheet with the geological description of the drill hole SMR-017-22-MTC. Source: Sociedad Minera Reliquias	66
Figure 11-1 Accuracy and cumulative accuracy chart for STD03-EPIT23-Ag. Source: The author	71
Figure 11-2 Accuracy and cumulative accuracy chart for STD05-PLSUL43-Ag. Source: The author	72
Figure 11-3 Accuracy and cumulative accuracy chart for ST10-HDRT02-Ag. Source: The author.	72
Figure 11-4 Accuracy and cumulative accuracy chart for SMR STD03-EPIT23-Ag. Channel. Source: The author	74
Figure 11-5 Accuracy and cumulative accuracy chart for STD05-PLSUL43-Ag. Channel. Source: The author	74

Figure 11-6 Accuracy and cumulative accuracy chart for ST10-HDRT02-Ag. Channel. Source: The author	75
Figure 14-1 3D perspective of Reliquias mine showing veins wireframes	86
Figure 14-2 Isometric view looking northeast, of the Ayayay system. Source: SMR	88
Figure 14-3 Plan view of the Matacaballo system. Source: SMR	89
Figure 14-4 Plan view of the Meteysaca system. Source: SMR	90
Figure 14-5 Plan view of the Sacasipuedes system. Source: SMR	91
Figure 14-6 Isometric view of the Sorpresa system. Source: SMR	92
Figure 14-7 Variography of silver for the mtc_ p group	. 108
Figure 14-8 Variography of silver for the mts_ p group	. 108
Figure 14-9 Variography of silver for the scs_ p group	. 109
Figure 14-10 Variography of silver for the sor_ p group	. 109
Figure 14-11 Block size, minimum and maximum number of samples, search distances for Reliquias mine veins.	
Source: The author	. 111
Figure 14-12 Distribution within the block model of the dip for the mtc_p vein. Source: The author	. 113
Figure 14-13 Histogram of the samples within the mineralized structures	. 114
Figure 14-14 Slice validation plot of the mtc_p vein	. 115
Figure 14-15 Longitudinal section showing – depletion due to mined areas for the MTS_P vein	. 118
Figure 14-16 Longitudinal section showing – depletion due to mined out areas for the MTS_P vein	. 119
Figure 14-17 Longitudinal section showing – depletion due to mined out areas for the SCS_P vein	. 119

1. Summary

1.1. Introduction

This Technical Report was carried out by the following independent qualified persons (QPs) who are recognized by the Canadian Securities Administrators (CSA): Mr. Antonio Cruz Bermudez who is a senior geologist, member of the Australian Institute of Geoscientists (AIG), with member number MAIG #7065 and Mr. Gerardo Acuña Perez who is a senior engineer mining, member Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM) member number FAusIMM CP (Mining) #337049. These qualified persons have the experience and full understanding for the preparation of this Technical Report in compliance with National Instrument 43-101 Standards of Disclosure for Mineral Projects of the Canadian Securities Administrators ("NI 43-101" or "43-101").

The Mineral Resource statement submitted in this Technical Report entitled "NI 43-101 Technical Report Mineral Resources Estimate for the Reliquias Mine, Huancavelica-Peru" has been prepared in accordance with NI 43-101 and its related Form 43-101F1. The effective date of this Technical Report is March 18th, 2023.

1.2. Property Description

The Reliquias Mine is part of the Reliquias Block of Castrovirreyna Project described in the "National Instrument 43-101 Technical Report, Castrovirreyna Project, 2021". It is located in the province and district of Castrovirreyna, department of Huancavelica, Peru.

Sociedad Minera Reliquias owns 100% of the mining concessions of the Reliquias Block (21,293.05 hectares) and therefore it has no royalty commitments or economic agreements with public or private companies. In addition, it has the surface rights to the mine, processing plant, tailings storage facility (TSF), and existing infrastructure as part of the Project acquisition. It is moving forward with signing long-term agreements with the community of Sallcca Santa Ana to gain access for exploration and drilling purposes.

1.3. History

The mining district of Castrovirreyna, where the Reliquias Mine is located, has been a silver producer since colonial times. Ore was processed in Castrovirreyna, where miners were grouped together, giving rise to the founding of the city of Castrovirreyna in 1592.

The Reliquias mine began its operations through the Corporacion Minera Castrovirreyna in 1946. On April 4th, 2017, operations at the Reliquias Mining Unit and the José Picasso Perata concession of benefit were halted due to insolvency and liquidation. Subsequently, in June 2018, Sociedad Minera Reliquias S.A.C. acquired those mining assets (mining concessions and infrastructure) through a direct agreement with Trafigura.

1.4. Geology and Mineralization

The Reliquias Mine is located along the Mio-Pliocene Metallogenic Belt of southern Peru. The mineralization in this belt, ranging in age from 7 to 1 Ma, is characterised by high sulphidation Ag-Au epithermal deposits (Corihuarmi, Pico Machay) and intermediate to low sulphidation Au-Ag, Pb-Zn-Ag deposits (Recuperada, San Genaro, Caudalosa Grande, etc.). The NW-SE-oriented Chonta Fault is the main structural control in this area.

The geology of the district is mainly composed of Miocene volcano-sedimentary rocks corresponding to the Castrovirreyna formations with thicknesses of 470 - 135 m and ages of 21-23 Ma, Auquivilca with thicknesses of 100 to 650 m and ages of 12 Ma and the Caudalosa formation with average thicknesses of 300 m and ages of 12-13 Ma. Structurally, it is located in the core of the Castrovirreyna synclinorium.

The mineralized structures vary in width from 0.3 to 5.0 metres, and the main mines include San Genaro, Caudalosa Grande, Reliquias, Pacococha, Astohuaraca, La Virreyna, Lira, Carmen, Bonanza, and La Griega. The mineralization is composed of galena, sphalerite, enargite, acanthite, polybasite, tetrahedrite, tennantite, chalcopyrite, and pyrargyrite. Gangue consists of quartz, pyrite, barite, calcite, rhodochrosite, hematite, stibnite, rejalgar, and oropyrite.

The mineralized structures have crustiform, cockade and banded textures with two main trends (northwest-southeast and east-west trending).

The main mineralized structures are Ayayay, Matacaballo, Meteysaca, Sacasipuedes, Sorpresa.

1.5. Exploration

In 2022, Silver Mountain Resources Inc. (AgMR) through its subsidiary Sociedad Minera Reliquias (SMR) carried out geological recognition and exploration work on the historical mineralized structures around the Reliquias mine. Table 1-1 shows the geological activities conducted during the year 2022.

7000	Activity	# Complex	QA/QC				
Zone	Activity	# samples	STD	BLK	Duplicate	Dup Reject	
Pozo Rico		20	2	1	2		
Lira De Plata	Lithological-Structural	93	8	3	3	3	
Sacasipuedes	mapping at a scale of	47	2	2	3	2	
Anabel	1:2,000 and rock chip	106	6	3	6	3	
Isabel	geochemical sampling.	36	2	2	4		
Dollar		53	4	1	2	2	
	Total	355	24	12	20	2	

Table 1-1 Exploration activities during the year 2022 in the surroundings of the Reliquias mine.

1.6. Drilling

SMR executed a diamond drilling and channel sampling programme in the underground mine workings to enable the first estimate of Mineral Resources according to CIM standards. The perforations were carried out from nine platforms located in standardized underground chambers.

The 2022 drilling programme consisted of 60 drill holes, with a total of 13,640.80 meters. For this SMR drilling programme, protocols and procedures were implemented to ensure the proper handling of data. The drill collars were located with a total station from the surveying contractor Geomatica Green.

The geological logging was carried out according to the protocols pre-established by the SMR Staff. The average recoveries of the 2022 drilling programme are over 99%.

1.7. Sample Preparation, Analysis and Security

The samples collected from the diamond drilling and the channels underground mine were prepared for shipment to the external laboratory according to the protocols and procedures implemented by Sociedad Minera Reliquias.

The quality control and quality assurance programme (QA/QC) includes the insertion of coarse blank samples and fine blank reference material, certified reference material, pulp duplicates, rejects, and duplicate samples in the batches sent to the commercial laboratory.

The author has not detected contamination, precision, or accuracy problems in any batch sent to the ALS Peru SAC chemical laboratory.

1.8. Data Verification

The information of the channels and perforations were delivered by SMR in CSV and Excel formats. On the other hand, the wireframes of the mineralized structures were built in the Leapfrog software.

Mr. Antonio Cruz (MAIG), an independent qualified person, considers that the review of the information demonstrates the reliability of the data and protocols followed by Sociedad Minera Reliquias for its 2022 drilling and channel sampling programme.

1.9. Mineral Resources Estimate

Antonio Cruz (MAIG), a Qualified Person as defined by the guidelines given in NI 43-101, made the mineral resources estimation of the mineralized structures located in the Reliquias mine.

The data used for the mineral resource estimation had a deadline of December 15, 2022. It consisted of diamond drill samples, channel samples, density tests within each structure, and 19 mineralized structures (modeled in leapfrog). The resource estimates were developed through the following steps:

- Data analysis and processing.
- Geological interpretation, modeling of the main lithologies, alteration, faults, and modeling of the mineralised structures.
- Separation of drilling samples and channels within each mineralized structure (veins).
- Basic statistical analysis by mineralized structure and element.
- Analysis and determination of extreme values per vein (top cuts).
- Determination of compositional length sizing and regularisation of drill and channel samples.
- Exploratory data analysis by veins, elements (silver, zinc, lead, copper, and gold), and density tests.
- Spatial continuity analysis (variography) of silver, zinc, lead, copper, and gold.
- Selection of estimation strategy and estimation parameters.
- Block modeling and grade estimation.
- Validation, classification, and discounting of mined zones for each mineralized structure.

- Calculation of Net Smelter Return (NSR), Silver Equivalent, and Cut-off (Variable Mine Cost).
- Declaration of Mineral Resources according to NSR and Cut-off.

The mineral resources for the polymetallic veins are summarized in Table 1.2. Mineral Resources are reported as undiluted and in situ in areas identified as accessible for underground production with NSR values greater than US\$ 36.34. The interpolation method used for the estimation of mineral resources was ordinary kriging.

Table 1-2 Mineral Resources for the polymetallic veins, effective date March 18th, 2023.

Catagory	Tonnes	Ag	Au	Zn	Pb	Cu	Contained Ag	Contained Au	Contained Zn	Contained Pb	Contained
Category	(t)	(g/t)	(g/t)	(%)	(%)	(%)	(oz)	(oz)	(t)	(t)	Cu (t)
Measured	107,300	104.87	0.34	3.45	2.27	0.29	361,800	1,200	3,700	2,400	300
Indicated	754,000	99.89	0.25	3.33	2.53	0.41	2,421,400	5,900	25,100	19,000	3,100
M + I	861,300	100.51	0.26	3.35	2.49	0.40	2,783,200	7,100	28,800	21,400	3,400
Inferred	969,000	99.60	0.21	2.71	1.94	0.34	3,103,000	6,600	26,100	18,800	3,300

Notes:

- Mineral Resources are those defined in the definition of the CIM Standards on Mineral Resources and Mineral Reserves, 2014.
- Mineral Resources have an effective date of March 18, 2023. Antonio Cruz Bermúdez is the independent qualified person responsible for the Mineral Resources estimate.
- The Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability.
- There is no certainty that all or part of the estimated Mineral Resources will be converted to Mineral Reserves.
- Mineral Resources are reported at US\$36.34 NSR cut-off for the polymetallic veins and the prices of the metals considered were Silver US\$23.29/oz, Copper US\$4.28/lb, Zinc US\$1.28/lb, and Lead US\$0.99/lb.
- Metallurgical recoveries for polymetallic veins are based on historical recovery: Ag= 73.00%, Pb= 83.00%, Zn= 71.00%, Cu= 85.00.
- The average density was calculated for all the veins and the average value used for the calculation of tonnage is 2.76 t/m³.
- Mineral Resource tonnes are rounded to the nearest thousand and totals may not add due to rounding.
- The reported Mineral Resources are not diluted.

- The Mineral Resources reported do not include mined-out areas.
- Antonio Cruz is not aware of any environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues that could materially affect the potential development of the Mineral Resource Estimate.

1.10. Interpretation and Recommendations

1.10.1. Interpretation and Conclusions

Mining Property, Surface Rights and Permits

The Reliquias mine is located within a total of 239 concessions, which do not have any material legal problems, and the payments of royalties are duly verified. In addition, the mineralized structures exploited by Corporacion Minera Castrovirreyna are within the concessions acquired by Sociedad Minera Reliquias. There is no risk that the surface projections of the veins are outside the limits of the mining property, and the exploration drilling program has been carried out within the mine workings.

There are only two communities that own the surface rights. These communities have historically had a good relationship with Corporacion Minera Castrovirreyna. Sociedad Minera Reliquias' community relations and property area maintains effective communication with the communities.

Sociedad Minera Reliquias has a valid water use license (535,272 m³ per year) from the Lopezcocha and Orccococha lagoons. The company also has a water use permit from 2010 and an updated permit to start mining operations.

Concerning royalties, Sociedad Minera Reliquias has no royalty commitments or economic agreements with public or private companies. According to the Peruvian law, a royalty is paid to the Peruvian government on production that varies between 1 and 3% of the sales value of the minerals being mined.

Access to the Reliquias Mine from the city of Lima is via a fully paved road and has adequate infrastructure for an underground mining operation.

Geology and Exploration

The Reliquias Mine is located in the Castrovirreyna mining district. The geological environment is constituted by volcanic sequences of the Caudalosa formation (flows and flow breccias with intercalation of tuffaceous sandstones) and the Castrovirreyna formation (lavas, volcanic agglomerates, pyroclastic sequences, and tuffs and sandy silts).

The mineralized structures are aligned following three dominant structural patterns: i) East-West system (Matacaballo vein), ii) NW-SE system (Sacasipuedes, Meteysaca, and Perseguida veins), iii) NE-SW system. The main structures have a width ranging from 0.5 to 3.0 meters and are recognized along strike for up to 2 km (Matacaballo vein).

Mineralization includes silver sulphosalts (proustite–pyrargyrite or ruby silver), silver-rich galena, arsenopyrite, pyrite, and chalcopyrite. Gangue minerals include quartz, barite, stibnite, and rhodochrosite.

According to the geological characteristics and the type of mineralization that presents the mineralized structures in the Reliquias mine, it is related to a epithermal deposit of the Intermediate Sulphidation subtype.

The exploration objectives were aimed at evaluating the potential of the numerous veins existing in and around the Reliquias mine. Reconnaissance and verification of veins have been carried out in 6 zones. The geochemical results of rock chip samples confirm the existence of a high silver content characteristic of polymetallic veins in the Castrovirreyna mining district.

Drilling, Sample Preparation and Data Verification

Sociedad Minera Reliquias has developed adequate protocols and procedures for drilling activities, quality control and quality assurance (QA/QC). The results of standard reference samples as well as control samples, blanks and duplicate samples reveal adequate sampling management and sample preparation.

Mineral Resources

Mineral Resource estimates were conducted under CIM definitions and comply with all mineral resource disclosure requirements set in NI 43-101.

The drilling program carried out by SMR in the main mineralized structures utilized adequate spacing for a Mineral Resource Estimate. For the Matacaballo vein, the drill grid averages 40 meters with 46 drill holes. For the Meteysaca vein, it averages 50 meters with 11 drill holes. And for the Sacasipuedes vein, it averages 45 meters with 23 drill holes.

The dimensions of the selective mining unit are 2m x 2m x 2m and are determined by the geometry of the veins, mining method, and type of mining equipment for the exploitation of mineralized structures (greater than 0.50 m).

Estimates have been made for five main veins and 14 splits, which have average widths from 0.1 to 2.0 meters.

The classification of the resources was defined under three considerations: qualitative characteristics, validation of the estimation, and the method of search volumen. It is classified as follows:

- Measured: distance between 25 and 30 meters.
- Indicated: distance between 55 and 60 meters.
- Inferred: distance between 80 and 90 meters.

1.10.2. Recommendations

Geology, Mineralization and Exploration

After the exhaustive research, the authors propose the following recommendations:

- To carry out a lithological-structural mapping at a scale of 1:1000 to determine the real extensions of the existing structures in the Reliquias mine area.
- To construct a lithological model of all local volcanic sequences to relate them to the mineralized structures and determine areas of potential bonanza-grade mineralization.
- To elaborate a detailed structural model at deposit scale in order to understand and classify the mineralized structures and relate them to local tectonic events.
- To define high-grade zones and possible flow directions of economically valuable metals to guide future drilling.

Database, QA/QC and Resources estimates

Recommendations regarding the database, QA/QC and resources estimates are the following:

- To implement an integrated system for the administration and management of geological data and laboratory results.
- To store geological, geotechnical data, laboratory results, and QA/QC programs in relational databases (Access, SQL, etc.).
- To implement equipment (precision balance, sample drying system, etc.) for density testing of all samples sent to the geochemical laboratory. These tests will allow SMR to assign with greater certainty the average density for each mineralized structure.
- To consider a drill spacing in the range of 30 to 45 meters for mineral resources. It will depend on the mineralized structure and the continuity of the economic zones.

• To complete drilling in zones currently classified as Indicated and Inferred in order to categorise them as measured resources, with drill diameters between NQ and BQ.

2. Introduction

2.1. Overview

Sociedad Minera Reliquias, a subsidiary of Silver Mountain Resources Inc., requested RREMIN SAC (RREMIN) to prepare a Technical Report in order to submit the results of a mineral resource estimate for the Reliquias Mine of the Reliquias Block and Castrovirreyna project.

The Reliquias Mine consists of polymetallic veins with high silver content. It has underground operations that were until 2017 managed by Corporación Minera Castrovirreyna (CMC). The existing infrastructure consists of underground mines, a concentrator, a tailings storage facility, a power supply line, a water supply system, fuel storage, a 370-person camp, warehouses, and maintenance shops.

RREMIN is an independent consulting firm that performs technical work for the mining industry. It is headquartered in Lima, Peru.

This technical report refers to the Technical Report entitled "National Instrument 43-101 Technical Report, Castrovirreyna Project", dated effective August 17th, 2021 and amended November 18, 2021.¹

2.2. Terms of References

The Mineral Resource statement included in this Technical Report entitled "NI 43-101 Technical Report Mineral Resources Estimate for the Reliquias Mine, Huancavelica-Peru" has been prepared according to NI 43-101 and its related Form 43-101F1. The effective date of this Technical Report is January 16th, 2023.

2.3. Qualified Persons and Responsibilities

This Technical Report was prepared by the following independent qualified persons (QPs) who are recognised by the Canadian Securities Administrators (CSA):

Mr. Antonio Cruz Bermudez is a senior geologist member of the Australian Institute of Geoscientists (AIG) with membership number MAIG #7065. He is also member of the Australasian Institute of Mining and Metallurgy (AusIMM) with membership number MAusIMM # 3056028 who possesses the expertise and full understanding for the preparation of this Technical Report under the definition of NI 43-101.

¹ See the Company's technical report, titled National Instrument 43-101 Technical Report—Castrovirreyna Project, Peru, dated October 6, 2021, amended November 18, 2021, effective date August 17, 2021, available at https://sedar.com

Mr. Gerardo Acuña Perez is a senior engineer mining member Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM). He is accredited as a Chartered Professional of the Australasian Institute of Mining and Metallurgy in the discipline of Mining, with membership number FAusIMM CP (Mining) #337049 who possesses the expertise and full understanding for the preparation of this Technical Report under the definition of NI 43-101.

Author	Area of Responsibility
Antonio Cruz,	Principal Reviewer, all the chapters and Summary.
MAIG	Chapters 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
Gerardo Acuña,	Calculation of the Net Smelter Return (NSR) and Cut-off
FAusIMM	Chapters 3, 4, 13

2.4. Site Visit

Mr. Antonio Cruz Bermudez carried out a personal inspection of the Reliquias Mine from January 26 to January 27, 2023, where he visited drill sites, logging stations, storage, and sample preparation facilities. In addition, Reliquias Mine technical personnel were interviewed. The inspection was conducted with the full support of Reliquias Mine staff and without restrictions in any aspect.

2.5. Information Sources and References

The technical team of the Reliquias Mine provided unpublished internal reports, reference material, information from maps, mapping, interpretations, log sheets, geochemical laboratory results of channel samples (underground mine and surface), and drill holes for the preparation of chapters 4 to 14. Also, information was provided that was prepared by external consultants contracted by Reliquias Mine.

2.6. Effective dates

The effective date of the resources estimate is December 16th, 2022 and the effective date of mineral resources statement is March 18th, 2023. The effective date of this Technical Report is March 27th, 2023.

Definitions of terms and acronyms are detailed in Table 2-2.

Table 2-2 Acronyms

Acronym	Description	Acronym	Description
Ag	Silver	MVA	Megavolt ampere
Au	Gold	MW	Megawatt
cfm	Cubic foot per minute	NI	National instrument
cm	Centimeters	NN	Nearest neighbor
COG	Cut-off grade	NSR	Net smelter return
Cu	Copper	ОК	Ordinary kriging
dmt	Dry metric tonne		
g	Grams	OZ	Troy ounce
g/t	Grams per dry metric tonne	oz/t	Troy ounce per dry metric tonne
ha	Hectares / Hectares	ppm	Parts per million
kg	Kilograms	Pb	Lead
km	Kilometers	psi	Pounds per square inch
kg/t	kilogram per dry metric tonne	QA/QC	Quality assurance/quality control
kV	Kilovolts	RMR	Rock mass rating
kW	Kilowatts	RQD	Rock quality designation
kVA	kilovolt ampere	S	Second
lbs	Pounds	t	Dry metric tonne
	Liter	t/m3	Dry metric tonnes per cubic meter
LOM	Life-of-mine	tpd	Dry metric tonnes per day
m	Metre	yd	Yard
mm	Millimetre	yr	Year
Ma	Millions of years	Zn	Zinc
masl	Metres above sea level	US\$/t	United States dollars per tonne
Moz	Million troy ounces	US\$/g	United States dollars per gram
Mn	Manganese	US\$/%	United States dollars per percent
Mt	Million dry metric tonnes	US\$_M	United States dollars stated in millions

3. Reliance on Other Experts

The authors have relied on information from a legal review performed by the legal counsel of Sociedad Minera Reliquias regarding the verification of titles to the concessions comprising the property, concession fees, and penalties payable. Information presented herein derived from reliance on the legal counsel of Sociedad Minera Reliquias is limited to sections 4.2 and 4.3 of this report.

The authors express no legal opinion as to the title or ownership status of the Property other than to report the finding of the legal counsel of Sociedad Minera Reliquias and to make a cursory review of the publicly available information regarding concession titles, concession maps, and payments due.

The authors express their confidence in the information provided by Sociedad Minera Reliquias since no extraordinary results or claims are made therein.

4. Property Description and Location

4.1. Property Location

The Reliquias Mine is part of the Reliquias Block of Castrovirreyna Project described in the "National Instrument 43-101 Technical Report, Castrovirreyna Project, 2021". It is located in the province and district of Castrovirreyna in the department of Huancavelica, Peru. The Reliquias Mine centroid has as coordinates: 474,268 east and 8,541,116 north (zone 18 South, Datum WGS-84), and according to the Instituto Geográfico Nacional (IGN), it is located on the topographic map sheet 27-m-Castrovirreyna at scale 1: 100,000.

Figure 4-1 Location map of the Reliquias Mina, Department of Huancavelica, Peru

4.2. Mining Tenures

4.2.1. Mining claims and Concessions

The Reliquias Block, where the Reliquias Mine is located, is made up of 239 concessions with a total of approximately 21,293.05 hectares. Table 4-1 shows the details of each concession held by Sociedad Minera Reliquia. Also, the list shows the processing plant concession called "CONCENTRADORA JOSE PICASSO PERATA" with 129.30 hectares.

CODE	CONCESSION NAME	CONCESSION HOLDER	TITLE/STATE	DATE REGISTERED	HECTARES
06000451X01	MIGUELITO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/02/1937	2.00
06000452X01	IRMA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/02/1937	2.00
06000453X01	ELSA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/02/1937	3.99
06000454X01	EL ALCAZAR	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/02/1937	8.02
06000455X01	HITLER	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/02/1937	3.99
06000562X01	CESAR AUGUSTO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/06/1945	9.46
10165004	EL CID CAMPEADOR	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	1/06/2004	153.78
06000010X01	MUSSOLINI	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/08/1924	5.99
06000130X01	DICTADORA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/08/1938	2.00
06000020X01	YOLANDA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/09/1937	2.00
06000022X01	HILDA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/09/1937	2.00
06000098X02	LA MADONA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	1/10/1918	6.00
06000070X01	CAUDALOSA SEGUNDA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	2/01/1908	7.98
10459195	NIÑO JESUS 4	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	2/01/1995	400.00
10459395	NIÑO JESUS 1	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	2/01/1995	600.00
10104709	SAN GENARO 005	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	2/04/2009	20.58
10034801	LA TINKITA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	2/05/2001	61.95
06000417X01	BADOGLIO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	2/06/1936	6.79
06000665X01	FRAGATA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	2/06/1947	17.96
06000666X01	SANTA TERESITA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	2/06/1947	9.98
06003566X01	GRACIELA DE RELIQUIAS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	2/06/1958	3.99
06003569X01	MARAVILLA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	2/06/1958	2.79
06003570X01	OLGUITA DE CAUDALOSA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	2/06/1958	1.66
10002005	AITANA 1	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2005	26.80
10002105	AITANA 2	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2005	36.52
10002205	AITANA 3	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2005	41.85
10002305	ALBERIC-1	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2005	500.00
10002405	ALBERIC 2	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2005	100.00
10010206	MENINA 1	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	2.00
10010306	MENINA 2	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	2.00
10010406	MENINA 3	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	0.37
10010506	MENINA 4	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	40.00
10010606	MENINA 5	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	66.00
10010706	MENINA 6	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	8.86
10010806	MENINA 7	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	10.94
10010906	MENINA 8	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	7.83
10011006	MENINA 9	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	2.00
10011106	MENINA 10	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	1.04
10011206	MENINA 11	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	3.95
10011306	MENINA 12	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	6.11
10011406	MENINA 13	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	14.72
10011506	MENINA 14	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	4.00
10011606	MENINA 15	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	12.00
10011706	MENINA 16	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	7.95
10011806	MENINA 17	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	9.90
10011906	MENINA 18	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	2.00
10012106	MENINA 20	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	17.92
10012206	MENINA 21	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	5.99
10012306	MENINA 22	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2006	600.00
10024607	NEGRITA NUMERO CUATRO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2007	1000.00
10024807	NEGRITA NUMERO DOS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2007	1000.00
10024907	NEGRITA NUMERO UNO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	3/01/2007	1000.00
06000488X01	ALVARO DE MONROY	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	3/02/1943	2.00
0600007Y01	SACA SI PUEDES	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	03/05/1886	4.25
06003444X01	ERNESTITO NUMERO DOS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	3/10/1957	23.95
06003445X01	GLADYS DE CAUDALOSA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	3/10/1957	2.00
10010322	SMR27	SOCIEDAD MINERA RELIQUIAS S.A.C	D.M. en Trámite D.I.	4/01/2022	300.00

Table 4-1 Mineral Concessions, Titleholder: Sociedad Minera Reliquias S.A.C. Source: SMR

CODE	CONCESSION NAME	CONCESSION HOLDER	TITLE/STATE	DATE REGISTERED	HECTARES
			708		
06000021X01	LA CANDELARIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	4/06/1902	3.99
06003750X01	BEATRICITA NUMERO DOS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	4/06/1959	8.98
06000675X01	RECCO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	4/12/1947	2.00
06000676X01	DEMASIA LIGURIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	4/12/1947	1.11
06000677X01	MACACONA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	4/12/1947	1.05
06000678X01	GENOVA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	4/12/1947	0.85
06007020X01	NOVEDAD	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	4/12/1979	2.00
06007021X01	NOVEDAD № 1	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	4/12/1979	1.01
06006628X01	LA PERLA 2	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	5/01/1979	12.00
06006629X01	PERLA 3	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	5/01/1979	18.00
06006631X01	ELIZABETH	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	5/01/1979	11.32
06006633X01	CHOLITO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	5/01/19/9	15.97
10023303	LOS POETAS 2	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	5/02/2003	600.00
10023403	LOS POETAS 1	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	5/02/2003	900.00
06000054X01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	5/03/1938	2.06
10074519	LOS POETAS 2019 1	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	5/04/2019	500.00
06000010X02		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	5/06/1937	3.99
06003598X01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	7/07/1958	2.00
06003600X01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	7/07/1958	6.99
06003601X01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	7/07/1958	2.00
06003602X01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	7/07/1958	1.00
06000041X01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	7/09/1924	2.00
06000503101		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	7/11/1941	4.62
06000510101		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	2/07/1020	3.92
06007432X01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	8/07/1980	98.00
06007433X01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	8/07/1980	140.94
06000004101	POTOSI	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	8/06/1924	4.19
06000149X01	MEXICO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	8/11/1920	2.00
10353104		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 103	8/11/1920	200.00
06000829V01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	9/05/1967	200.00
06000025101	SANTA BOSA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	9/09/1937	3.99
06000027X01	ZANDALIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	9/09/1937	3.99
06000508Y01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	9/09/1937	2.00
06000019Y03	CAUDALOSA Y SOCAVON SAN	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	10/03/1887	8.36
06000218203		SOCIEDAD MINERA RELIQUIAS S A C	D.M. Titulado D.L. 109	10/03/1951	7 99
10077307	LIBA DE PLATA 33	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	27.42
10077407	LIRA DE PLATA 34	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	74.28
10077507	LIRA DE PLATA 35	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	7.92
10078207	LIRA DE PLATA 3	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	23.95
10078407	LIRA DE PLATA 5	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	11.99
10078507	LIRA DE PLATA 6	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	340.79
10078607	LIRA DE PLATA 7	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	164.51
10078807	LIRA DE PLATA 9	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	64.87
10078907	LIRA DE PLATA 10	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	2.99
10079007	LIRA DE PLATA 11	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	4.10
10079207	LIRA DE PLATA 13	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	6.69
10079507	LIRA DE PLATA 16	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	11/01/2007	20.00
10079707	LIRA DE PLATA 18	PAN AMERICAN SILVER PERU S.A.C.	D.M. Titulado D.L. 708	11/01/2007	10.00
10079807	LIRA DE PLATA 19	PAN AMERICAN SILVER PERU S.A.C.	D.M. Titulado D.L. 708	11/01/2007	40.00
06000021X02	SACA SI PUEDES SEGUNDA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	11/08/1924	1.30
06000047X01	DEMASIA VITOQUE	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	11/09/1924	1.81
06000281X01	PAULINITA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	11/10/1923	17.97
06000432X01	MATILDE	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	11/12/1936	11.98
06000145X01	DURANGO I SOCAVON	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	12/08/1920	2.00
P0200529	CONCENTRADORA JOSE	SOCIEDAD MINERA RELIQUIAS S.A.C.	Planta de Beneficio	12/09/1957	129.30
0.0000	PICASSO PERATA			, ,	
U6UU3642X01	LACATUA DOS	SUCIEDAD IVIINERA RELIQUIAS S.A.C.	U.IVI. LITUIADO D.L. 109	12/12/1958	23.95

CODE	CONCESSION NAME	CONCESSION HOLDER	TITLE/STATE	DATE REGISTERED	HECTARES
06000190Y01	VULCANO NUMERO DOCE	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	13/02/1918	11.99
06000223Y01	IBERO PERUANO NUMERO DOS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	13/02/1918	19.98
06006383X01	CANDELARIA 3RA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	13/04/1978	4.71
06006384X01	CANDELARIA 4TA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	13/04/1978	2.99
06003572X01	PASTEUR	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	13/06/1958	2.00
06003574X01	DANIEL A CARRION	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	13/06/1958	2.00
06003423X01	ERNESTITO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	13/08/1957	23.95
06000411Y01	HUACACHINA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	14/01/1928	9.19
06003689X01	LUCHITA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	14/04/1959	1.00
06003691X01	ESTELA DE LUIS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	14/04/1959	14.97
06003692X01	FLORENCIA CAROLINA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	14/04/1959	7.98
06003693X01	AMELIA JULIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	14/04/1959	8.98
06003696X01	ESTELA NUMERO DOS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	14/04/1959	4.99
06000148X01	HIDALGO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	14/08/1920	2.00
06000809Y01	FLORITO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	14/11/1965	179.63
10300821	SMR06	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	500.00
10301021	SMR13	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	400.00
10301121	SMR12	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	1000.00
10301221	SMR11	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	1000.00
10301721	SMR14	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	600.00
10301821	SMR05	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	700.00
10301921	SMR10	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	200.00
			D.M. en Trámite D.L.		
10302021	SMR 28	SOCIEDAD MINERA RELIQUIAS S.A.C.	708	14/12/2021	1000.00
10302121	SMR08	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	400.00
10302221	SMR07	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	700.00
10302421	SMR09	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	14/12/2021	600.00
06003772X01	ROSA AMANDA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	15/06/1959	13.97
06003773X01	ROSA AMANDA NUMERO UNO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	15/06/1959	13.97
06000022X02	MARGOT	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	16/08/1924	2.00
06000024X01	SAN AGUSTIN	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	16/08/1924	2.00
06000372X01	DEMASIA NUMERO ONCE	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	17/01/1942	6.67
06000796Y01	SANTA ROSALIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	17/01/1964	15.07
06004834X01	POZO CHICO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	17/01/1964	1.00
10021301	LA TINKA 2	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	17/04/2001	1000.00
06000437X01	POR FIN CAYO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	17/12/1936	9.98
06002704X01	SOL DE ICA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	17/12/1954	6.99
06002705X01	AMERICANO GANCIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	17/12/1954	4.99
06002706X01	TORINO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	17/12/1954	3.99
06000597X01	JULITA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	18/07/1946	0.45
06000598X01	DUILIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	18/07/1946	1.44
06000600X01	ROSITA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	18/07/1946	0.16
06000601X01	VISTA ALEGRE	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	18/07/1946	0.28
06004562X01	CARMELA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	18/07/1962	560.00
06008508X01	CESAR VALLEJO 10MO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	18/09/1990	169.65
06000015Y01		SOCIEDAD MINEBA RELIQUIAS S.A.C	D.M. Titulado D.L. 109	19/08/1887	1 57
06000094Y01	VICTORIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	19/09/1906	3.99
06000387801	ADELITA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	19/12/1935	5.99
06000388201		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	19/12/1925	3.99
06000389801	GRIMA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	19/12/1935	5.99
06000390201	DE BONO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	19/12/1925	2.00
06000330701	ETIODIA		D.M. Titulado D.L. 109	10/12/1025	2.00
06000391X01			D.M. Titulado D.L. 109	10/12/1025	5.33
06000392701			D.IVI. HUIAGO D.L. 109	10/12/1935	3.33
06000393X01		SUCIEDAD MINERA RELIQUIAS S.A.C.	D.IVI. HITUIAGO D.L. 109	19/12/1935	2.00
06000394X01		SOCIEDAD MINERA RELIQUIAS S.A.C.	D.IVI. HTUIAGO D.L. 109	19/12/1935	7.98
06000395X01		SUCIEDAD IVIINERA RELIQUIAS S.A.C.	D.IVI. HILUIADO D.L. 109	19/12/1935	5.99
06004843X01		SUCIEDAD MINERA RELIQUIAS S.A.C.	D.IVI. LITUIADO D.L. 109	20/02/1964	7.50
06000088X02	ALFREDU	SUCIEDAD MINERA RELIQUIAS S.A.C.	D.IVI. LITUIADO D.L. 109	20/05/1925	1.00

CODE	CONCESSION NAME	CONCESSION HOLDER	TITLE/STATE	DATE REGISTERED	HECTARES
06000310X01	RICA CASTRINA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	20/06/1929	3.32
06000831Y01	EMMA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	20/06/1958	25.51
06003578X01	LAURA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	20/06/1958	2.00
06003579X01	CASTILLA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	20/06/1958	3.99
06003581X01	ALVAREZ THOMAS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	20/06/1958	3.08
10145106	MENINA 19	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	21/03/2006	22.45
06000696X01	CALIFORNIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	21/07/1948	39.91
06000697X01	ARGENTINA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	21/07/1948	2.23
06000698X01	LOS ANGELES	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	21/07/1948	2.00
06000699X01	BUEN VECINO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	21/07/1948	2.00
06000808Y01	ESTELA № 3	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	21/11/1964	2.00
06004959X01	ESTELITA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	21/11/1964	7.18
06003559X01	LA LIRA № 2	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	22/05/1958	18.10
06003562X01	LA LIRA № 3	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	22/05/1958	26.94
06003564X01	LA LIRA № 6	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	22/05/1958	20.96
10232905	ALBERIC 4	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	22/07/2005	300.00
06003622X01	MARIANA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	22/09/1958	6.99
06003583X01	GIOCONDA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	23/06/1958	1.00
06003584X01	CARMELA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	23/06/1958	9.98
06003585X01	RAULITO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	23/06/1958	7.98
06003586X01	MARINA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	23/06/1958	2.00
06004569X01	MARIA MADONA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	23/07/1962	1.66
06007445X01	DELIA DE CAUDALOSA 3RA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	24/07/1980	235.37
	SAN PEDRO Y SOCAVON				
06000020Y01	CRUCERO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	25/06/1886	8.37
06003164X01	ITANAYOC	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	25/07/1956	8.42
06003808X01	DORITA DE BONANZA № UNO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	25/08/1959	1.00
	DORITA DE BONANZA				
06003809X01	NUMERO DOS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	25/08/1959	1.00
06003810X01	DORITA DE BONANZA NUMERO TRES	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	25/08/1959	4.99
06000807Y01	ADELITA SEGUNDA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	25/11/1968	15.94
06008033X01	ATAHUALPA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	26/02/1982	32.93
06000240Y01	АТОССНА	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	26/10/1923	19.96
06000294X01	PITONIZA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	26/10/1923	9.98
10091806	MENINA 23	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 708	27/01/2006	400.00
06000463X01	RESCATE	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	27/03/1937	3.99
06000804Y01	CESAR VALLEJO 5°	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	27/03/1980	95.87
06007288X01	CESAR VALLEJO 3RO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	27/03/1980	12.00
06007289X01	CESAR VALLEJO 4TO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	27/03/1980	159.66
06007291X01	CESAR VALLEJO 6TO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	27/03/1980	4.73
06007292X01	CESAR VALLEJO 7MO	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	27/03/1980	2.84
06000823Y01	JORGE LUIS	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	27/04/1964	1.00
06003610X01	ALCIRA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	28/08/1958	1.00
06003611X01	ODILIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	28/08/1958	1.98
06003612X01	MARIA DEL PILAR	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	28/08/1958	2.99
06003613X01	MARCELA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	28/08/1958	1.00
06003615X01	MARIA DEL CARMEN	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	28/08/1958	1.00
06006617X01	PERIA 4	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	28/12/1978	15.99
06006618X01		SOCIEDAD MINERA RELIQUIAS S.A.C	D.M. Titulado D.L. 109	28/12/1978	79.96
06006619X01	NANCY	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	28/12/1978	19.99
06003592X01	SANTOS CHOCANO	SOCIEDAD MINERA RELIQUIAS SAC	D.M. Titulado D.L. 109	30/06/1958	37.91
06003593X01	CARLOS MAREATEGUI	SOCIEDAD MINERA RELIQUIAS S.A.C	D.M. Titulado D.L. 109	30/06/1958	206.57
06003594X01	CESAR VALLEIOS	SOCIEDAD MINERA RELIQUIAS SAC	D.M. Titulado D.L. 109	30/06/1958	199.59
06003595¥01	BICARDO PALMA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/06/1958	59.65
06003596X01	POMONA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/06/1958	3.99
06003597X01	OFFLIA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/06/1958	1.00
06007513X01	EMMA 18A	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/09/1980	5.99
06007514X01	FMMA 2DA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/09/1980	3.99
06007515X01	EMMA 3RA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/09/1980	1.00

NI 43-101 Technical Report Mineral Resources Estimate for the Reliquias Mine, Huancavelica-Peru

CODE	CONCESSION NAME	CONCESSION HOLDER	TITLE/STATE	DATE REGISTERED	HECTARES
06007516X01	EMMA 4TA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/09/1980	1.00
06007517X01	EMMA 5TA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/09/1980	4.00
06007518X01	EMMA 6TA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/09/1980	2.87
06007519X01	EMMA 7MA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/09/1980	7.25
06000623X01	BUENOS AIRES	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/10/1946	0.99
06000827Y01	ROSA DE BONANZA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/11/1964	2.91
06004965X01	ROSA DE BONANZA Nº 1	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/11/1964	34.93
06004967X01	ROSA DE BONANZA Nº 3	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	30/11/1964	3.99
06000143X01	MONTERREY	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	31/07/1920	3.99
06000144X01	TORREON	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	31/07/1920	2.00
06007873X01	LOPEZCOCHA	SOCIEDAD MINERA RELIQUIAS S.A.C.	D.M. Titulado D.L. 109	31/08/1981	21.39

Figure 4-2 shows the Reliquias Block concession map.

Figure 4-2 Mining concessions, Reliquias Block. Source: Sociedad Minera Reliquias

Sociedad Minera Reliquias acquired from Pan America Silver the mining properties of the Lira de Plata project, which consists of 14 concessions comprising the historic mine called Lira de Plata which includes ten mineralized structures, with strike lengths between 100 m and 575 m (Lewis, 1964).

The agreement to purchase the mining concessions concluded the 100% acquisition of the Lira de Plata project. For this transfer of the mining titles, Sociedad Minera Reliquias paid Pan American Silver US\$80,000. The effective date of the transaction was October 26th, 2022.

4.2.2. Mining Right in Peru

The regulatory framework applicable to the mining activity is mainly composed of the following rules: These are the rules that regulate the operation of the mining activity in environmental, tax, social, and labour issues and in respect of prospecting and mining exploration, in addition to the development and construction, production, exploitation, and closure of mines.

The mining regulatory framework has a history of reform in the early 1990s. This measure was implemented in order to encourage foreign investment in the sector.

In Peru, the sustainable use of natural resources is carried out accordance with a system of concessions and the General Mining Law (LGM) establishes the types of concessions related to the activities of exploration, exploitation, beneficiation, general work, and mining transport, which must be carried out by national or foreign natural and legal persons through a single system of concessions.

- a) Mining Concessions: The holder has the right to explore and exploit the natural resources that lie underneath the subsoil.
- b) Beneficiation Concessions: Grants the right to extract and concentrate (through physical or chemical processes or both) the parts of a mineral aggregate.
- c) General Working Concessions: Relating to all mining activities that provide auxiliary services (ventilation, dewatering, or extraction) to two or more concessions held by different owners.
- d) Mining Transport Concessions: Grants the right to the concession holder to install and operate a massive transport system for mineral products through conveyor belts, and pipes defined by the General Management of Mining in Peru.

4.2.3. Mining Concession Titles

INGEMMET (Instituto Geologico, Minero y Metalurgico, the Peruvian geological survey) is the entity in charge of granting mining concession titles and is also responsible for the management of the national mining cadastre, the right of validity, and penalties.

The right to explore and exploit metallic and non-metallic mineral resources within an area is defined by vertical planes corresponding to the sides of a closed polygon (square or rectangle). The coordinates of the vertices are determined in the Universal Transverse Mercator (UTM) system and under the World Geodetic System (WGS84). In addition, mining concessions are granted in extensions of 100 to 1,000 hectares, in grids or sets of grids that adjoin on at least one side, except in the maritime domain, where grids of 100 to 10,000 hectares may be granted.

Mining activities are classified into three levels. (i) General regime: mining concession holders that own more than 2,000 hectares of mining concessions or have an installed production or beneficiation capacity exceeding 350 tpd or have a legal entity among their shareholders; (ii) Small mining producer regime: Mining holders who own up to 2,000 hectares of mining concessions or who have an installed production or beneficiation capacity of no more than 350 tpd; (iii) Artisanal mining producer regime: mining holders who own up to 1,000 hectares or who have an installed production or beneficiation capacity of no more than 25 tpd.

4.2.4. Right of Validity and Penalties

For mining concessions granted by the Peruvian state a compulsory fee in US dollars has to be paid, which is called the "right to remain in force". The payment is annual and must be made prior to 30 June each year.

The total amount to be paid for mining concessions is determined by the number of hectares and according to the type of mining activity: (i) General regime: US\$ 3 per year and hectare (ii) Small mining producer regime: US\$ 1 per year and hectare and (iii) Artisanal mining producer regime: US\$ 0.5 per year and hectare. Failure to comply with this obligation for two consecutive years is cause for the mining concession to expire.

The holders of mining concessions are obliged to invest in the exploration and exploitation of minerals. The minimum production must not be less than a UIT (Peruvian tax unit) per year and hectares for metallic substances and 10% of the tax unit regarding non-metallic substances for the medium and large-scale mining regime. Failure to comply with these minimum production obligations per year and per hectare will be subject to penalties and will be determined by: (i) as of the eleventh year, 2% of the Minimum Production, (ii) as of the fifteenth year, 5% of the Minimum Production; and (iii) as of the twentieth year, 10% of the Minimum Production. The concession holder will not pay any penalty if the amount invested is not less than ten times the amount of the penalty per year and acre. If the

Minimum Production is not reached at the expiry of the thirtieth year, the mining concession will be declared expired by INGEMMET.

4.3. Surface Rights

Sociedad Minera Reliquias is in the process of signing long-term agreements for mining easement with the Sallcca Santa Ana and Pacococha communities to obtain access for exploration and drilling purposes.

Sociedad Minera Reliquias is developing prospecting and exploration activities in the province of Castrovirreyna, in the districts of Santa Ana and Castrovirreyna, which in turn are home to communities with the same names. The areas of direct influence belong to the annexes of Caudalosa Grande (30 families) and Santa Rosa (55 families), which belongs to the peasant community of Saclla Santa Ana (450 families); and the annex of Pacococha (65 families), which belongs to the peasant community of Castrovirreyna (400 families). All areas are circumscribed as zones of direct impact of exploration activities.

Figure 4-3 shows the existing population centers in the Reliquias mine area.

Figure 4-3 Location of existing population centers in the surroundings of the Reliquias mine. Source: Sociedad Minera Reliquias.

Figure 4-4 shows the surface right owners in the Reliquias block where the Reliquias mine is located.

Figure 4-4 Map with the limits of the communities that own surface properties. Source: SMR.

In Peru, the surface property belongs to a natural or legal person or the State. The natural resources found below the surface properties belong to the State, which grants exploration and exploitation rights through mining concessions.

For the mining owner to access the resources of his concession, he must reach an agreement with the surface owner or request a mining easement.

4.4. Environmental Permits

Table 4-2 shows the main environmental permits processed by Corporacion Minera Castrovirreyna and Sociedad Minera Reliquias.

Environmental Management Instrument	File N°/ Resolution Status		Submission Date	
EIA 2009	RD N°372_2009_MEM_AAM	APPROVED	November 20 th , 2009	
MEIA 2014	RD N°619_2014_MEM_DGAAM	APPROVED	December 24 th , 2014	
1st Substitute Technical Report	ITS-00152-2022	2022 Under Evaluation June 10 th ,		
DIA Dorita	3255041	Under Evaluation	January 25 th , 2022	
	3410367		January 5 th , 2023	
CIRA Dorita 1	N° 210-2022-DDCHUV/MC	APPROVED	December 1st, 2022	
CIRA Dorita 2	N° 212-2022-DDCHUV/MC	APPROVED	December 7 th , 2022	
PAD	N°3367340	REVISION APPEAL	September 23 rd , 2022	
Authorization for the discharge of treated industrial wastewater	-	Under Evaluation	October 25 th , 2022	
Surface water use license for Lopezcocha lake for potable water purposes	RA-0336-2011-ANA-ALA-BAJO APURIMAC.PAMPAS	APPROVED	September 30 th , 2011	
License for the use of surface water for Orccoccocha lake for industrial purposes	RA-0337-2011-ANA-ALA-BAJO APURIMAC.PAMPAS	APPROVED	September 31 st , 2011	
Environmental Liability Statement	N° 3395008	Under Evaluation	December 13 th , 2022	

Table 4-2 List of environmental permits, source: Sociedad Minera Reliquias.

The author of this section has no knowledge of environmental liabilities around the Reliquias mine.

4.5. Other Permits

The National Superintendency for the Control of Security Services, Weapons, Ammunition and Explosives for Civil Use (SUCAMEC), through the resolution N° 03224-2022-SUCAMEC/GEPP", has granted SMR the Explosives Storage Authorization and Related Materials at the Reliquias Mine facilities. In addition, SMR submitted a request for the use and acquisition of explosives to SUCAMEC.

4.6. Agreements and Royalties

Sociedad Minera Reliquias owns 100% of the mining concessions of the Reliquias Block. In addition, it has no royalty commitments or economic agreements with public or private companies.

4.6.1. Royalties and Income Taxes

In Peru, mining companies pay a mining activity tax ranging from 29.5% to 31.5%, which varies according to operating profit, tax on distributed dividends, and workers profit sharing scheme (8%).

Law N° 29788 (Mining Royalties Law) states that mining companies that do not have a tax stability agreement are obliged to pay a royalty calculated on the quarterly operating profit, with rates ranging from 1% to 12%. When the estimated value of the operating profit is less than 1% of sales, an ad valorem payment of 1% is due.

The exceptional mining tax is calculated similar to royalties and varies between 2% and 8.4%, depending on the operating profit. The value of the special mining tax paid is considered an expense for income tax purposes.

5. Accessibility, Climate, Local Resources, Infrastructure and Physiography

5.1. Access

Access to the Reliquias Mine from the city of Lima is via the Panamericana Sur highway to the district of San Clemente (Province of Pisco, Ica). From this town, take the Via de los Libertadores highway (route PE-28A) to the junction with route PE-28D (Castrovirreyna - Huancavelica Highway) towards the town of Santa Ines. From the city of Lima to the access detour to the Reliquias mine, the road is completely paved, with an average distance of 450 kilometers and a travel time of approximately 7 hours. Figure 5-3 shows the main access to the Reliquias Mine.

Figure 5-1 Main Access Routes to the Reliquias mine. Source: Sociedad Minera Reliquias.

5.2. Physiography

The Reliquias Block presents topographic characteristics that are a consequence of an inclement weathering due to the glaciation and deglaciation actions that have occurred in past times. This is demonstrated by the presence of moraines at the bottom of the valleys

and deposits of mudflows made up of a great proportion of angular and semi-angular fragments, which are indicators of a short travel distance. The most important physiographic features include glacial valleys, steeply sloping mountains, gentle hills, etc., and altitudes of 4,500 to 5,000 masl. The Reliquias Mine is located in inter-Andean high plateaus where lagoons predominate.

5.3. Climate

The climate is characterized by being frigid throughout the year. Between the months of April to November the climate is dry. From December to March, it is humid with snowfall and heavy rains. The average annual rainfall is 800 mm, and the average temperature is 1.5 to 3.0 °C each year. According to the climate classification (Holdridge, 1971), the Reliquias mine corresponds to the type "sub tropical alpine pluvial tundra" located between 4500 and 5000 masl.

5.4. Local Resources and Infrastructure

The Reliquias mine, formerly operated by Corporación Minera Castrovirreyna, has the following infrastructure:

- Reliquias underground mine: consisting of a ventilation system, a water pumping system, an explosives magazine, and mining equipment.
- Concentrator: a 2,000 t/d conventional concentrator to produce copper, lead, and zinc concentrates.
- Tailings Storage Facility: sufficient remaining capacity for two years of tailings production at 2,000 t/d process rate.
- Infrastructure: power supply line, water supply system, fuel storage, a 370person camp, warehouses, and maintenance shops.

Figures 5-2 and 5-3 show the distribution of the main existing infrastructures in the Reliquias block.

Figure 5-2 Location of the main infrastructure at the Reliquias Mine. Source: Sociedad Minera Reliquias.

Figure 5-3 Location of the main infrastructures located at the Caudalosa Mine. Source: Sociedad Minera Reliquias.

The Reliquias Mine facilities are connected to the substation of Consorcio Energetico Huancavelica (CONENHUA), which is a private company engaged in electric power transmission and generation activities.

The drinking water supply for the Reliquias Mine is provided by a pipeline, which carries water by gravity to two main concrete reservoirs. Water for industrial use comes from the Nv440 - Reliquias and the Caudalosa water treatment plants, which collect and store water for treatment. Water is collected from nearby streams and lagoons to supply drinking and industrial water.

The city of Huancavelica is located 87 km north of the Reliquias mine, with a population of approximately 49,570 (2017 census). The city is a regional source of services for the mining industry, including supplies and fuel. Skilled labour may also come from in and around the city. The closest settlements to the Reliquias mine are Castrovirreyna, Santa Ana, and Pacococha. These settlements can provide housing and unskilled labour.

6. History

6.1. Prior Ownership

The mining district of Castrovirreyna, where the Reliquias Mine is located, has been a silver producer since colonial times. Ore was processed in Castrovirreyna, where miners were grouped together, giving rise to the founding of the city of Castrovirreyna in 1592.

Corporación Minera Castrovirreyna was founded in 1942 and started operating the Reliquias and Caudalosa Grande mines.

In July 1980, the "Jose Picasso Perata" processing plant was authorized to operate with an installed capacity of 500 tons per day.

Due to the drop in silver prices and other economic factors, the Reliquias mine ceased operations in 1992.

In 2004, it was decided to start the rehabilitation of the underground mine, recovering old workings of its main veins such as Sacasipuedes, Matacaballo, Mete y Saca and Perseguida Oeste at levels 440, 480, 520 and 560, with the purpose of programming and executing mining exploration works, by means of diamond drilling and mining workings. Large-scale mining with the sublevel stoping method was implemented in 2009.

The restart of work and expansion of the installed capacity of the José Picasso Perata Mill from 550 to 2000 dry metric tonne was approved in 2010. As a result of the fall in silver prices in 2015, the Reliquia mine reduced its mining production.

On April 4th, 2017, operations at the Reliquias Mining Unit and the José Picasso Perata concession of beneficiation were halted due to insolvency and liquidation.

In June 2018, Sociedad Minera Reliquias S.A.C. acquired those mining assets (mining concessions and infrastructure) through a direct agreement with Trafigura.

6.2. Exploration History

The following is a brief description of the main exploration milestones at the Reliquias mine:

- 1990, geological evaluations and exploration proposal employing underground galleries for the Reliquias mine.
- 1998, a geological and economic evaluation was executed to determine the exploration potential of 17 veins (the Caudalosa and Reliquias mines).
- 2006, estimation of mineral resources below the 440 level for the 17 existing veins at the Reliquias mine.

• 2014, determination, distribution, and zoning of economic metals for the Reliquias mine between levels 390 and 290.

Table 6-1 shows the veins identified at the Reliquias mine and the number of historic drill holes drilled per veins.

Table 6-1 List of historical	drilling and mineralized structures recognized in the Reliquias mine.
Source: CMC.	

Vein	# Drill Holes
Atoccha	-
Ауауау	7
Beatita 1era	-
Esperanza	-
Matacaballo	27
Meteysaca	-
Pasteur	18
Perseguida	-
Perseguida Norte	-
Pilar	-
Pozo Rico	-
Pozo Rico Norte	-
Sacasipuedes	12
Sorpresa	3
Uno	-
Vulcano	5

6.3. Production and Historical Resources Estimate

Table 6-2 shows historical production from the Reliquias and Caudalosa mines between 2009 and 2014. This information was extracted from the annual reports of Corporacion Minera Castrovirreyna.

In 2019, Sociedad Minera Reliquias requested RM-Master Pro Quality to conduct a mineral resource estimate for the Reliquias mine. This resource estimate was used to guide the 2022 drilling programmes. The author of this report (as stated in the "National Instrument 43-101 Technical Report, Castrovirreyna Project, 2021") declares that "the mineral resources are reliable for exploration purposes at the Reliquias and Caudalosa mines."

			(Concentra	ates	Fines Content							
Year	Product Type	Product	Tonnes	Ag	Au	Pb	Zn	Cu	Ag	Au	Pb	Zn	Cu
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(t)	(oz/t)	(g/t)	(%)	(%)	(%)	(oz)	(oz)	(t)	(t)	(t)	
2000	Bulk	7,847	124.92	0.21	10.21	9.72		980,248	1 6 4 6				
2009	Zinc	407	13.94	0.04	1.03	35.72			1,646				
2010	Bulk	9,404	135.49	0.3	7.05	9.61		1,274,170	2,789				
2011	Bulk	10,163	136.2	0.41	8.59	8.25		1,384,181	4,176				
2012	Bulk	10,895	127.51	0.36	11.3			1,389,186	3,973				
2012	Lead	6,645	118.73	0.35	18.4			788,994	2,354	1,222			
2013	Zinc	821	15.34	2.83	1.3	48.86		12,604	41		401		
	Lead	6,237	82.24	8.28	29.58	10.77	2.07						
2014	Zinc	3,586	13.25	2.38	2.06	44.09	1.53	555,032	2,505	1,936	1,767	166	
	Copper	696	124.94	67.92	10.5	10.38	23.91						
	Lead	2,112	94.01	6.58	34.67	7.72	2.02						
2015	Zinc	1,201	6.36	0.8	1.9	52.23	1.65	241,760	882	732	627	71	
	Copper	340	104.72	39.81	13.99	11.29	20.86						

Table 6-2 Summary of the historical production records of the Corporacion Minera Castrovirreyna.Source: Sociedad Minera Reliquias.

The mineral resources for the Reliquias mine polymetallic veins are shown in Table 6-3; the cut-off used was NSR greater than US\$63.65.

Category	Tonnes (000)	Ag (oz/t)	Pb (%)	Zn (%)	Cu (%)	NSR (US\$/t)
Measured	337	8.49	2.68	3.55	0.57	192.8
Indicated	401	9.69	2.25	3.42	0.52	196.5
Measured + Indicated	737	9.14	2.44	3.48	0.54	194.8
Inferred	737	11.19	2.57	3.59	0.77	226.3

Table 6-3 Historical mineral resources for the Reliquias Mine. Source: Sociedad Minera Reliquias.

Disclosure of Historical Estimates: (1) Historical Resources Estimates (Table 6-3) have been classified in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum ("CIM") Definition Standards on Mineral Resources and Mineral Reserves, whose definitions are incorporated by reference into NI 43-101. (2) Historical Resources Estimates (Table 6-3) are not Mineral Reserves or Resources and do not have demonstrated economic viability. All figures are rounded to reflect the relative accuracy of the estimates. (3) Information as of July, 2019 Source: Sociedad Minera Reliquias SA, the information is based on RM-Master Pro Quality, C. Rodriguez, Abr19; (4) The QP considers that the Historical Resources Estimates (Table 6-3) is relevant for the proper understanding of the Project and additional exploration including drilling could be needed to verify the historical estimate as current mineral resources (5) A qualified person has not done sufficient work to classify the historical estimate as current mineral resources or mineral reserves; and (6) The issuer is not treating the historical estimate as current mineral resources or mineral reserves.

7. Geological Setting and Mineralization

7.1. Regional Geology

The Reliquias mine is located in the southern sector of the western Peruvian Andes Mountains. The continental orogeny that occurred in the Upper Cretaceous generated the tectonic inversion that gave rise to the Andean compression responsible for the elevation of the mountain range. The basement is made up of carbonate rocks from the Upper Cretaceous, on which lie volcanic sequences of andesite lava flows covered by pyroclastic and epiclastic deposits corresponding to the Castrovirreyna and Caudalosa formations.

The regional stratigraphy (Figure 7-1) comprises a sequence of sedimentary and volcanic rocks dating from the Lower Cretaceous represented by the Goyllarisquizga Group, to the Tertiary volcanic formations of Neogene age, represented by several volcanic formations, among the most recent being the Astobamba Formation (Miocene-Pliocene). In addition, there are small intrusions of granodiorite, monzogranite, and diorite, part of the Coastal Batholith, which intrude the Mesozoic sequence and partially intrude the Tertiary volcanic sequences. There are also small sub-volcanic stocks of andesite, rhyolite, and dacite.

The most important structural feature is the regional Chonta fault recognised over a strike length of more than 200 km (Wise & Noble, 2001) and with a northwest-southeast Andean direction. The Chonta fault is a reverse fault associated with the Castrovirreyna synclinorium (Wise & Noble, 2001). In addition, subvolcanic intrusions are located, as well as numerous mines and prospects over a length of more than 100 km. The transtensional shear zones are oriented perpendicular to compression, producing northeast-southwest trending lineaments.

7.2. Mio-Pliocene Metallogenic Belt of Southern Peru

The Reliquias block is located along the Mio-Pliocene Metallogenic Belt of southern Peru (Quispe, 2008). The mineralization, ranging in age from 7 to 1 Ma, is characterised by high sulphidation Ag-Au epithermal deposits (Corihuarmi, Pico Machay) and intermediate to low sulphidation Au-Ag, Pb-Zn-Ag deposits (Recuperada, San Genaro, Caudalosa Grande, etc.). The NW-SE-oriented Chonta Fault is the main structural control in this area.

Figure 7-1 Regional Geology. Sources: J. Wisw & D. Noble

7.3. District Geology

The geology of the district is mainly composed of Miocene volcano-sedimentary rocks corresponding to the Castrovirreyna Formation (Noble et al., 1974) with thicknesses of 470 - 135 m and ages of 21-23 Ma, Auquivilca (Salazar & Landa, 1993) with thicknesses of 100 to 650 m and ages of 12 Ma and the Caudalosa Formation (Salazar & Landa, 1993) with average thicknesses of 300 m and ages of 12-13 Ma. Structurally, it is located in the core of the Castrovirreyna synclinorium.

The mineralization in this geological district is of the low sulphidation epithermal type, defined by vein-like fracture-fill structures with strike directions from N45°E to N60°E and sub-vertical and vertical dips (between 70° and 90°).

The mineralized structures vary in strength from 0.3 to 5.0 metres. The main mines include San Genaro, Caudalosa Grande, Reliquias, Pacococha, Astohuaraca, La Virreyna, Lira, Carmen, Bonanza, La Griega. The mineralization is composed of galena, sphalerite, enargite, acanthite, polybasite, tetrahedrite, tennantite, chalcopyrite, and pyrargyrite. Gangue consists of quartz, pyrite, barite, calcite, rhodochrosite, hematite, stibnite, realgar and orpiment (Masías, 1929, Lewis 1964). Studies of fluid inclusions determined by Sawkins & Rye, 1974 reveal that the western part of the district indicates formation temperatures between 265 and 320°C, and the salinity is 4 to 8 % by weight of NaCl equivalent.

Figure 7-2 District geologic map of the Reliquias Block. Source: INGEMMET

7.4. Property Geology

In the Reliquias Mine area exist mainly volcanic rock sequences grouped in lava and pyroclastic flow units, basically consisting of andesites to trachytic andesites, porphyritic andesites and basaltic andesites, as well as discontinuous lava flows with intercalations of pyroclastic rocks. Figure 7-3 shows the local geology mapped at a scale of 1:10,000 (B. Huisa, 2019).

7.4.1. Volcanic Rocks

Consisting of i) Caudalosa Formation (12-14 Ma), where flows and flows breccias with lenticular intercalations of pyroclastics and tuffaceous sandstones are found. At the base of this formation, it is made up of whitish and pinkish tuffs. In the upper part, it is made up of a sequence of andesitic lavas with pyrite dissemination and ii) Castrovirreyna Formation (21-22 Ma), with lavas, volcanic agglomerates, and a pyroclastic sedimentary sequence at the base. Tuffaceous breccias are alternating with tuffs and sandy siltstones towards the top.

7.4.2. Intrusive Rocks

Near the Reliquias mine outcrops of andesitic porphyritic stocks have been observed, which are characterised by a whitish brownish colour. Also, there are silicified zones in contact with the enclosing rocks and dacitic porphyries, which are distributed and aligned with quartz veins in a west-east direction. The andesitic and dacitic porphyries are emplaced along the vertical structures located in the Caudalosa volcanic centre.

7.4.3. Structural Setting

Neogene volcanism (andesite lavas, pyroclasts and epiclastic rocks) formed large domic centres and volcanic cones, where mineralized veins and focal zones of hydrothermal alteration are located. The mineralized structures are aligned following three dominant structural patterns; i) East-West system (Matacaballo vein), ii) NW-SE system (Sacasipuedes, Meteysaca, and Perseguida veins), iii) NE-SW system.

The geological structures are locally controlled by other circular systems (caldera type, with semi-circular structures) whose margins are generally natural depressions. These are currently occupied by high mountain lakes.

Figure 7-3 Local geology plan and geological cross section, showing the existing veins in the Reliquias block. Source: Sociedad Minera Reliquias.

7.4.4. Alteration

The mineralized structures in the Reliquias Mine area display three main alteration types: i) Silicification, present within the clasts of the breccias, and in lesser development in the wall rocks of the structures. ii) Argillization, presents clay-sericite assemblage in the host rocks of the mineralized structures and with greater development in the veins of greater thickness and iii) Propylitization and Chloritization in the sectors furthest from the veins.

7.4.5. Mineralization

Mineralization includes silver sulphosalts (proustite–pyrargyrite or ruby silver), silver-rich galena, sphalerite, chalcopyrite, pyrite, and enargite. Gangue minerals include quartz, barite, stibnite, and rhodochrosite. Manganese oxide is common in fractures and vein alteration halos. In the upper levels of the veins, the common minerals are proustite–pyrargyrite, tetrahedrite, galena, quartz, barite, and pyrite. At depth, the assemblages typically include galena, sphalerite, chalcopyrite, pyrite, quartz, and carbonates. Gold occurs as inclusions in galena and chalcopyrite.

7.4.6. Polymetallic Veins

The mineralized structures identified during previous mining activity have crustiform, cockade, and banded textures with two main trends (northwest-southeast and east-west trending). The geological characteristics of the main veins within the Reliquias mine are described below:

Ayayay Vein (AYA)

The Ayayay vein is a cymoid-loop type mineralized structure with brecciated hyaline quartz, grey quartz, and patches of sulphides. Mineralization consists mainly of galena, sphalerite, and sulphosalts. It trends N60°W with sub-vertical dips oriented to the SE, thicknesses vary between 0.1 to 0.5 metres in thickness and its average continuity is 500 metres. To the southeast, the structure is limited by the Matacaballo vein and to the northwest, the limit of this structure has not been defined.

Matacaballo Vein (MTC)

The MTC vein has a recognized length of 2 kilometres with a strike ranging from N75° E to E-W and dips from 75° to 85°SW to 75° to 80° NE. The width varies between 0.5 and 5.0 metres. Primary sulphides in the vein are sphalerite, galena, polybasite, pyrargyrite, chalcopyrite, and tetrahedrite distributed in gangue pyrite, quartz, rhodochrosite, and calcite.

Silver values are highly variable along strike and throughout the thickness of the vein with a tendency to gradually decrease in depth, as can be seen at levels 4678 masl (Lv. 642), 4600 masl (Lv. 560), and 4560 masl (Lv. 520).

The structure appears as a hydrothermal breccia with silicified and argillized clasts enveloped in a silica matrix with sulphides. This breccia is affected by the later emplacement of rhodochrosite. The silica matrix may be banded or massive milky quartz, grey quartz, and drusy quartz, in which geode voids are observed. Sulphides are found as patches of millimetre to centimetre sizes, with massive sulphide sections sporadically observed in drill holes. Sulphides consist of honey-coloured sphalerite intergrown with cubic galena, steel-coloured galena with curved cleavages, chalcopyrite, finely crystallised pyrite, fine grey sulphides that would contain tetrahedrite and sulphosalts. The mineralization is affected by the emplacement of rhodochrosite veinlets.

The wall rocks are mostly argillised, extending from 1.0 to 20.0 metres depending on the thickness of the main structure and its splits. Silicification is concentrated at the margins of the mineralized structures. Disseminated minerals and veinlets are often found in the vicinity of the main structure. In some intervals, they have higher mineral content than the main structure.

SMR has defined several mineralized structures associated with the MTC vein, which due to spatial continuity have been interpreted as vein splits. MTC has been divided into three zones according to the change in strike orientation. In addition, six main associated mineralized structures have been determined.

The central zone, with internal dip variations between 65° to 75° to the northeast and strike between N70°E to N80°E, presents wide structures in rosary-style and splits. In this sector the main structure of MTC reaches up to 4.0 metres including vein and sigmoid zones, additionally a mineralized split has been interpreted towards the hanging wall of the structure, which has been denominated Split 1. Towards the south, three smaller splays have been identified, named Split 2, Split 3, and Split 4. These are interpreted as sigmoids that present local mineralization within the structures made up of milky and grey quartz, reaching lengths of up to 300 metres (Split 1, Split 3). The limit between this central zone and the west would be the inferred intersection with the Ayayay vein.

The West zone has an orientation of N90° to 100° with a dip of 60° to 70° to the north. This sector shows that the main structure generates irregular veining, with smaller veinlets and veins between 0.1 to 1.0 metres thickness, and a lesser degree of sulphide mineralization. There are two main splays, MTC-South and MTC-South A, which present higher mineralization. The MTC structure displays a reduction in thickness and lesser mineralization before intercepting the SCS vein, while the split disappears.

The East zone presents less enriched sulphide mineralization, with the development of breccias and quartz veins of lower grade mineralisation. However, the so-called "Ore Shoot 2" was partially mined in levels. As the boundary between the Central and the East Zone, an inferred intersection between the MTS and MTC vein is considered.

Meteysaca Vein (MTS)

The MTS vein is a fault-zone-related structure, being recognised on Level 415 for about 450 metres by mine development. It has a general strike orientation of N125° with a steep northerly dip. Below Level 415, the MTS vein consists of milky quartz, grey quartz with thicknesses ranging from 0.1 to 0.8 metres, and finely disseminated sulphide mineralisation, galena, and sphalerite. The wall rocks show argillic alteration. The veins are splitting, forming sigmoids and "rosary-style" behaviour (pinch-and-swell) along strike. These cymoid loops separate from the MTS vein, as well as the main structure, are composed of quartz veinlets with sulphide banding and brecciation. Split 1 with a continuity of 150 metres has a general N100° orientation with an interpreted dip to the south. Split 2 is discontinuous, sub-parallel to Split 1. Other splays at the hanging wall of the main structure have been recognised by drilling. The recognised widths vary from a few centimetres up to one metre.

Sacasipuedes Vein (SCS)

The SCS vein has a general strike of N55°W with subvertical dip, with the dip direction switching between NE and SW.

It is characterised by massive white and grey quartz with patchy sulphide mineralisation. This structure is associated with faulting, resulting in the development of fault gouge and brecciation. Patches of rhodochrosite may be present as gangue.

The mineralization is irregular, with patchy and finely disseminated sulphides within the massive quartz. Occasionally we can observe sections of several centimetres of massive sulphides. The main mineralization consists of sulphides such as sphalerite, galena, chalcopyrite, and pyrite, plus the occurrence of fine sulphides probably containing silver sulphosalts. Narrow vein splits and fine veinlets of quartz and quartz-sulphides occura few metres around the structure.

According to the spatial distribution of the mineralisation as determined by the drilling programmes, the SCS vein can be divided into three zones: northwest, central and southeast. The northwest and central zones have better developed mineralization, within a relatively narrow structure, additionally vein splays with restricted mineralized shoots occur. The southeast zone presents poorly developed mineralization in the main structure, while the occurrence of vein splits is restricted.

Sorpresa vein (SOR)

The SOR vein has an E-W strike orientation and thicknesses ranging from 0.1 to 0.5 metres. The mineralization consists of fine sulphides, galena, and sphalerite. Drilling has encountered this structure for 200 metres along strike.

Figure 7-4 shows the locations of the main structures recognised by historic underground mining, development, and drilling programmes.

Figure 7-4 Geological map and the main veins in and around the Reliquias mine. Source: Sociedad Minera Reliquias.

8. Deposit Types

The veins in the Reliquias Mine area were formed as fracture fillings along faults, fractures, or fissure zones. The veins present a tabular geometry with subvertical dips. These structures are continuous where the host rocks are andesitic lava flows, while in pyroclastic sequences, the veins are irregular. The predominant mineralization is polymetallic, with high silver content (proustite-pyrargyrite or ruby silver). The gangue minerals comprise quartz, barite, stibnite, and rhodochrosite, with the presence of manganese oxide in fractures. Alteration in the central zones of the veins is mainly strong silicification, grading to argillic alteration towards the selvages. The more distal alteration is propylitic, with the presence of epidote, chlorite, and actinolite.

According to the geological characteristics and the type of observed mineralization, the Reliquias mine represents an epithermal deposit of the Intermediate Sulphidation subtype.

These deposits are genetically related to subduction-related arc environments or orogenic and post-collision belts (Sillitoe & Hedenquist, 2003). Intermediate Sulphidation (IS) deposits have high silver and base metal contents with low gold content linked to porphyry-type Cu + Au or Mo deposits (Sillitoe & Hedenquist, 2003).

The ages of mineralization of the intermediate sulphidation deposits range from Cenozoic to Miocene and are formed at depths less than 1.5 km and accompanied by strong uplift and intense erosion. Commonly, the mineralogy consists of pyrite, Fe-poor sphalerite, galena, chalcopyrite, and tetrahedrite/tennantite, while gangue minerals present are quartz, manganese carbonates, and adularia. The total sulphide content of the deposits is in the range of 5% to 20% by volume.

Figure 8-1 shows a conceptual model for the high-silver polymetallic veins of the Reliquias mine.

Figure 8-1 Schematic representation of epithermal deposits, intermediate sulphidation. prepared by SMR 2021, after Wang et al., (2019).

9. Exploration

9.1. Overview

SMR is currently pursuing numerous prospective exploration targets in areas adjacent to the Reliquias mine and along known mineralized structures (Figure 9-1). Exploration activities throughout 2022 were correlated to the reconnaissance and validation of historically known mineralized structures, as well as detailed structural mapping at a scale of 1:2.00 and rock chip sampling (381 samples).

Figure 9-1 Exploration targets near Reliquias Mine. Source: Sociedad Minera Reliquias.

9.2. Brownfield Exploration Targets

9.2.1. Pozo Rico Zone

Three Pozo Rico vein systems have been identified (Pozo Rico 1, Pozo Rico 2, Pozo Rico 3), situated southeast of the SCS structure. This system includes 11 main structures totalling 680 m in length, with a preferred orientation of N105° and an average width of 1 m. Rock chip sampling of the area on surface indicates significant vein values of up to 507 g/t Ag; 1.96 g/t Au; 15,000 ppm Pb; 24,000 ppm Zn; 1,260 ppm Cu.

Figure 9-2 Plan map showing geochemistry of Pozo Rico zone. Source: Sociedad Minera Reliquias.

9.2.2. Lira de Plata Zone

Ten principal structures have been identified and recognised in the Lira de Plata zone, and reconnaissance sampling has been carried out in the Virreyna zone, which has reported grades of up to 263 g/t Ag; 79,000 ppm Pb; 47,000 ppm Zn; 15,350 ppm Cu; 0.78 g/t Au. These are described in more detail below:

1) Lira Vein, with a strike length of 210 m that has been observed on surface with an E-W orientation and an average width of 1.0 m. Historical information indicates that this structure has a recognised length of 500 m at surface (R. Wheatley Lewis Jr, 1984). The

2022 rock chip sampling results report values up to 1,325 g/t Ag, 224,000 ppm Pb; 44,000 ppm Zn; 5430 ppm Cu; and 3.04 g/t Au.

- **2) Antonio Vein,** with an orientation of approximately N285°, an average width of 0.8 m with, and a recognised length of 18 metres. In 1964, R. Wheatley stated that, according to old workings, the vein has a projection along strike of 200 metres. Rock chip sampling indicates values of up to 36 g/t Ag; 4,260 ppm Pb; 1,895 ppm Zn; 443 ppm Cu; and 0.08 g/t Au.
- **3)** Sánchez Cerro Vein outcrops at the surface with a length of 70 metres, with a probable extension to the East and West of the vein reaching a total of 150 metres, an orientation of N260°, and an average width of 1 metre. Sampling results report values of up to 90.5 g/t Ag, 14,000 ppm Pb; 1,085 ppm Zn; 364 ppm Cu; and 0.14 g/t Au.
- 4) De La Cruz Vein, with a length of 75 metres recognised with an E-W orientation and an average width of 1.0 metres. This structure is currently being worked by artisanal miners. Samples from the current ore pile report values of 421 g/t Ag; 220,000 ppm Pb; 160,000 ppm Zn; 9,200 ppm Cu; and 0.6 g/t Au.
- **5) Carmen Vein** has 320 metres of recognised strike length, with an E-W orientation and an average width of 0.75 meters, grading up to 898 g/t Ag, 253,000 ppm Pb; 102,000 ppm Zn; 34,200 ppm Cu; and 4.34 g/t Au.
- 6) Ensueño Vein has been recognised on surface for 70 metres, with an azimuth of N95° and an average width of 0.75 metres, grading 242 g/t Ag, 30,000 ppm Pb; 2,930 ppm Zn; 867 ppm Cu; and 1.25 g/t Au.
- **7)** Leticia Vein, with a surface length of 90 metres, an orientation of N245°, and a width of 0.70 metres, grading up to 67 g/t Ag, 3,790 ppm Pb; 3,610 ppm Zn; 32 ppm Cu; and 0.06 g/t Au.
- 8) Leticia 1 Vein: exploration work has recognised a 30-metre strike length with an E W orientation; assays report up to 541 g/t Ag; 15,000 ppm Pb; 18,000 ppm Zn; 3,390 ppm Cu; and 0.26 g/t Au.
- **9)** Ilusión Vein, with a strike length of 70 m and orientation of approximately N240°, grading up to 125 g/t Ag; 88,000 ppm Pb; 304 ppm Cu; and 0.20 g/t Au.
- **10)** Ensueño 2 Vein has an E-W orientation, with a recognised length of 20 metres and grades up to 79 g/t Ag; 18,000 ppm Pb; 1,100 ppm Zn; 761 ppm Cu; and 0.33 g/t Au.

Figure 9-3 Plan map showing the geochemical results and the main structures in the Lira de Plata zone. Source: Sociedad Minera Reliquias.

9.2.3. Sacasipuedes Zone

On the surface, a strike length of 1,400 meters, an average width of 0.50 m, and an orientation of N305° have been recognised, with values up to 959 g/t Ag; 35,000 ppm Pb; 35,000 ppm Zn; 2,000 ppm Cu; and 2.44 g/t Au from limited reconnaissance sampling. Two parallel structures were observed as well: i) Sacasipuedes 1, approximately 120 meters long with a direction of N290° and an average width of 0.5 meters, with values up to 2,360 g/t Ag; 17,000 ppm Pb, 2,790 ppm Zn; 4,750 ppm Cu; and 13.7 g/t Au. ii) Sacasipuedes 2, with a length of 70 meters of approximately E-W orientation with values up to 458 g/t Ag; 1,790 ppm Pb; 1,835 ppm Zn; 229 ppm Cu; and 4.59 g/t Au.

Figure 9-4 Plan map showing the geochemical results and the main structures in the Sacasipuedes zone, Source: Sociedad Minera Reliquias.

9.2.4. Anabel Zone

In this zone, two main structures have been recognised i) the Anabel vein, with a length of 370 metres, with an E-W orientation, and an average width of 1 meter. Reconnaissance sampling returned up to 217 g/t Ag, 31,000 ppm Pb; 50,000 ppm Zn; 4,260ppm Cu; and 6. 67 g/t Au. ii) Aguila Americana vein, with a length of 200 meters and an average width of 1.0 meter of N125° orientation and values up to 407 g/t Ag; 39,000 ppm Pb; 118,000 ppm Zn; 5,480 ppm Cu; and 0.8 g/t Au. In addition, short tension structures (between 5 to 20 cm thick) have been identified with values of 241 g/t Ag; 55,000 ppm Pb; 9,300 ppm Zn; and 2.27 g/t Au.

Figure 9-5 Plan map showing the geochemical results and the main structures in the Anabel zone. Source: Sociedad Minera Reliquias.

9.2.5. Isabel Zone

This zone is characterised by a series of structures mostly of N290° orientation and width varying from 0.4 to 0.70 meters, with values up to 449 g/t Ag; 6,060 ppm Pb; 5,760 ppm Zn; 896 ppm Cu; and 0.7 g/t Au from initial sampling.

Figure 9-6 Plan map showing the geochemical results and the main structures in the Isabel zone. Source: Sociedad Minera Reliquias.

9.2.6. Dollar Zone

The Dollar vein has a length of 1,000 meters with an approximate direction of N300° and an average width of 1.0 meters with values up to 675 g/t Ag; 55,000 ppm Pb; 69,000 ppm Zn; and 13.35 g/t Au. Some minor structures parallel to the Dollar vein are observed in the zone with lengths of approximately 15 metres with values up to 506 g/t Ag.

The Dollar structure has seen historic mining on at least three underground mine levels during the past decades. Initial reconnaissance sampling was completed on surface to assess mineral content of this vein along strike.

Figure 9-7 Plan map showing the geochemical results and the main structures in the Dollar zone. Source: Sociedad Minera Reliquias.

10. Drilling

10.1. Introduction

Between 2007 and 2016, Corporacion Minera Castrovirreyna carried out several drilling programmes at the Reliquias mine (Table 10-1) to increase the mineral resources and to define the continuity of mineralization along the strike and towards depth of the main veins in production. Sociedad Minera Reliquias completed a drilling programme between April and December 2022 to verify, update, complete and extend the block model of the main veins, as well as to estimate the mineral resources in the Matacaballo, Meteysaca, Sacasipuedes, Sorpresa, and Ayayay veins.

Year	N° Holes	Metreage	Vein
2007	29	5,138.25	Sacasipuedes, Meteysaca, Ayayay, Itanayoc
2009	13	1,668.40	Matacaballo
2010	32	3,843.87	Matacaballo, Candelaria and Dollar
2011	24	3,615.10	Sacasipuedes and Matacaballo
2012	39	5,053.09	Sacasipuedes, Temerarios, Vulcano and Perseguida
2013	8	1,287.60	Perseguida
2016	11	2,004.40	Escondida and Grima
Total	156	22.610.71	

Table 10-1 Historical drilling carried out by Corporacion Minera Castrovirreyna. Source: CMC.

10.2. 2022 Programme

The 2022 drilling programme consisted of 60 drill holes, totaling 13,640.80 metres. Drilling was carried out from nine locations in standardized underground chambers with drill hole lengths ranging from 68 m to 445 m and inclinations varying from 1° to -55°. The program is divided into three zones: the first zone MTC, consisted of 25 holes for a total drilled meterage of 6,646.85 m, while the second zone SCS comprised 23 holes with 4,485.25 m drilled, and the third zone MTS of 12 holes with 2508.70 m drilled. The drilling was executed by drilling contractor Explomin Peru, which used two drill diameters; HQ with a total of 12,222.05 meters and NQ with 1,418.75 m drilled.

A summary of the 2022 Programme can be found in Table 10-2, including coordinates and specific targets. The average recoveries for the 2022 drilling programme are above 99%.

Hole ID	Easting	Northing	Elevation	Final Length	Dip	Azimuth	Zone
SMR-001-22-MTC	474,274.25	8,539,267.57	4,427.12	290.50	-9.6	55.5	MTC
SMR-002-22-SCS	474,244.26	8,539,412.11	4,424.32	199.80	-30.4	264.1	SCS
SMR-003-22-MTC	474,272.49	8,539,268.68	4,426.94	245.60	-14.2	36.0	MTC
SMR-004-22-SCS	474,245.68	8,539,411.82	4,424.70	176.50	-38.3	233.0	SCS
SMR-005-22-MTC	474,272.55	8,539,268.53	4,426.63	362.20	-26.3	45.5	MTC
SMR-006-22-SCS	474,245.77	8,539,411.71	4,424.78	168.00	-35.0	192.0	SCS
SMR-007-22-SCS	474,246.48	8,539,412.70	4,424.17	269.55	-55.1	249.5	SCS
SMR-008-22-MTC	474,272.11	8,539,268.77	4,426.40	263.90	-30.0	7.5	MTC
SMR-009-22-SCS	474,245.80	8,539,411.94	4,424.29	230.80	-55.1	209.1	SCS
SMR-010-22-MTC	474,272.21	8,539,268.74	4,426.14	308.90	-34.7	16.0	MTC
SMR-011-22-SCS	474,245.22	8,539,412.42	4,424.02	212.40	-45.6	251.0	SCS
SMR-012-22-MTC	474,272.42	8,539,268.65	4,426.58	255.30	-24.3	32.5	MTC
SMR-013-22-SCS	474,244.39	8,539,412.26	4,424.11	189.10	-50.1	219.7	SCS
SMR-014-22-SCS	474,243.17	8,539,412.25	4,424.58	165.00	-27.8	250.7	SCS
SMR-015-22-MTC	474,272.44	8,539,268.65	4,426.29	296.65	-31.3	33.6	MTC
SMR-016-22-SCS	474,028.79	8,539,492.92	4,376.64	68.65	-43.1	241.0	SCS
SMR-017-22-MTC	474,271.69	8,539,269.09	4,425.91	299.00	-36.6	355.9	MTC
SMR-018-22-SCS	474,028.11	8,539,493.16	4,376.75	146.15	-35.1	276.6	SCS
SMR-019-22-SCS	474,037.13	8,539,487.48	4,376.95	107.70	-25.0	157.0	SCS
SMR-020-22-MTC	474,273.10	8,539,268.20	4,426.78	352.85	-18.8	50.3	MTC
SMR-021-22-SCS	474,036.64	8,539,487.76	4,376.45	113.60	-48.9	176.7	SCS
SMR-022-22-SCS	474,083.75	8,539,540.64	4,383.69	171.50	-36.1	240.1	SCS
SMR-023-22-MTC	474,272.38	8,539,268.73	4,426.99	195.50	-10.6	26.4	MTC
SMR-024-22-SCS	474,083.78	8,539,540.95	4,383.16	234.00	-39.2	258.4	SCS
SMR-025-22-MTC	474,271.93	8,539,268.91	4,426.76	216.70	-18.8	356.4	MTC
SMR-026-22-SCS	474,083.88	8,539,540.66	4,383.36	183.45	-43.2	219.6	SCS
SMR-027-22-MTC	474,272.23	8,539,268.79	4,426.77	209.45	-18.1	15.3	MTC
SMR-028-22-SCS	474,083.96	8,539,540.66	4,383.76	186.40	-38.7	191.8	SCS
SMR-029-22-MTC	474,274.23	8,539,267.52	4,426.73	317.90	-17.8	43.6	MTC
SMR-030-22-SCS	474,083.64	8,539,541.16	4,383.32	212.65	-52.6	235.3	SCS
SMR-031-22-SCS	474,084.05	8,539,540.70	4,383.02	224.15	-52.6	206.3	SCS
SMR-032-22-MTC	474,163.37	8,539,346.08	4,425.13	174.40	-34.4	29.1	MTC
SMR-033-22-MTC	474,163.65	8,539,345.90	4,424.99	202.70	-36.0	36.6	MTC
SMR-034-22-SCS	474,083.99	8,539,540.76	4,383.23	236.60	-47.1	182.8	SCS
SMR-035-22-MTC	474,068.52	8,539,402.73	4,399.26	138.30	-42.7	61.5	MTC
SMR-036-22-MTC	474,163.29	8,539,346.08	4,424.91	221.65	-42.6	20.2	MTC
SMR-037-22-MTC	474,068.54	8,539,402.75	4,399.30	120.40	-45.3	44.9	MTC
SMR-038-22-MTC	474.163.28	8.539.346.35	4.424.86	187.75	-37.7	10.1	мтс

Table 10-2 Location and targets for all drill holes of the 2022 Programme. Source: SociedadMinera Reliquia.

Hole ID	Easting	Northing	Elevation	Final Length	Dip	Azimuth	Zone
SMR-039-22-MTS	474,172.35	8,539,722.71	4,452.69	225.20	-19.3	74.7	MTS
SMR-040-22-MTC	474,163.02	8,539,346.30	4,424.54	231.90	-44.7	354.3	MTC
SMR-041-22-MTS	474,172.34	8,539,723.09	4,452.65	170.05	-22.3	56.4	MTS
SMR-042-22-SCS	473,932.17	8,539,700.97	4,470.01	250.00	-33.4	181.0	SCS
SMR-043-22-MTS	474,172.34	8,539,723.05	4,452.39	174.40	-33.3	37.2	MTS
SMR-044-22-SCS	473,929.54	8,539,699.10	4,469.34	256.30	-39.4	203.6	SCS
SMR-045-22-MTS	474,171.93	8,539,723.63	4,452.54	149.95	-23.8	24.0	MTS
SMR-046-22-SCS	473,927.91	8,539,702.27	4,469.43	237.70	-34.6	233.9	SCS
SMR-047-22-MTS	474,170.06	8,539,724.62	4,452.82	183.20	-21.2	349.7	MTS
SMR-048-22-MTS	474,172.31	8,539,722.74	4,452.53	221.50	-32.1	66.5	MTS
SMR-049-22-SCS	473,927.88	8,539,704.03	4,470.10	245.25	-26.9	251.6	SCS
SMR-050-22-MTS	474,172.40	8,539,722.31	4,452.89	300.15	-15.6	92.6	MTS
SMR-051-22-MTC	474,454.17	8,539,648.94	4,454.86	290.35	-16.1	157.4	MTC
SMR-052-22-MTS	474,171.32	8,539,724.00	4,452.36	201.10	-37.5	9.6	MTS
SMR-053-22-MTS	474,172.23	8,539,723.05	4,452.32	241.25	-45.1	49.5	MTS
SMR-054-22-MTC	474,454.22	8,539,648.94	4,454.40	282.20	-29.1	152.6	MTC
SMR-055-22-MTS	474,170.58	8,539,724.63	4,452.27	218.65	-29.8	345.0	MTS
SMR-056-22-MTC	474,454.42	8,539,649.05	4,454.92	332.60	-14.6	141.8	MTC
SMR-057-22-MTS	474,171.46	8,539,723.94	4,452.63	192.20	-29.5	2.1	MTS
SMR-058-22-MTS	474,170.62	8,539,724.48	4,452.01	231.05	-42.0	354.0	MTS
SMR-059-22-MTC	474,455.40	8,539,649.72	4,455.03	444.70	-9.6	116.8	MTC
SMR-061-22-MTC	474,454.45	8,539,649.16	4,455.38	405.45	1.3	126.0	MTC

Figure 10-1 shows the location of the drilling programme executed between April and December 2022 and the locations of the historic drill holes carried out by Corporacion Minera Castrovirreyna.

Figure 10-1 Map with the locations of the drilling of the 2022 programme and the historical drilling in the Reliquias mine. Source: Sociedad Minera Reliquias.

10.3. Drilling Methodology

The drill holes were planned using systematic sections, plan views, as well as historic wireframes prepared by Corporacion Minera Castrovirreyna. The software used for drill hole projection are Leapfrog and Datamine StudioRM. In addition, the coordinate system used for the drill hole location is WGS84 Zone 18 South. The drill collars were located with a total station from the surveying contractor Geomatic Green. Before starting to drill, Sociedad Minera Reliquias personnel checked the alignment and inclination of the drill rig and, if satisfied, approved the start, and assigned a drill number according to the nomenclature described in the drilling protocol prepared by Sociedad Minera Reliquias staff.

The drill cores were stored inside polypropylene boxes, which were directly arranged at the drill site, where each drilled section was labelled with the drill hole code with a permanent marker. In the core shack, additional labelling is carried out, which consists of placing the drill hole name, start and end of sections in each box, box number, etc.

The geologist determined when a drill hole is completed, assessing whether the target depth was reached and whether the mineralized structures were fully intercepted. Sociedad Minera Reliquias staff decided how many metres beyond the target depth to drill depending on the alteration and mineralization in the rock, usually between 10 to 30 metres beyond the target depth.

Topography data collection at the beginning and end of each borehole was carried out with topographic equipment (total station) by the company Geomatic Green. The interior deviation measurements for each borehole were taken at 30 metres intervals. The equipment used to record the deviation were EZ-GYRO[™], Reflex EZ-TRAC[™], and TruShot. The instrument was operated by the drilling contractor. Then, the data was sent to the geology department of Sociedad Minera Reliquias. Finally, after each drill hole, Sociedad Minera Reliquias geologists validated the collars and deviation readings submitted by the contractor.

10.4. Core logging

This activity was carried out according to the protocols and procedures defined by Sociedad Minera Reliquias staff. The geological and geotechnical logging process started with filling in a physical format on paper (Figure 10-2), then digitising and transferring to an Excel and Access database. First, a header table was filled in with information such as the logger's name, start and end dates, log date, and collar details. Next, the geologist described and drew in detail the lithology, alteration, mineralization, and structures observed in the drill hole.

Figure 10-2 Log sheet with the geological description of the drill hole SMR-017-22-MTC. Source: Sociedad Minera Reliquias.

Geotechnical data such as recovery and RQD were calculated by dividing the actual core length between two markers and multiplying by 100. RQD is a measure of rock stability and is calculated by adding continuous solid pieces longer than 10 cm between two markers. Mechanical fractures caused during drilling were considered continuous. Only natural discontinuities were considered true discontinuities.

The sections to be sampled were selected according to the protocols and procedures, with a minimum length of 0.30 m for HQ cores and a minimum length of 0.50 m for NQ diameter cores, leaving in both cases 50% of the core as reference.

16% QA/QC control samples were inserted, and additionally, 4% external control samples (pulp and rejects) were sent to a commercial secondary laboratory. The sampled intervals were marked on the core, then the cores were split in two. One part was used for chemical analysis in a certified laboratory. The other part is labelled with the sampling codes in the original boxes, which will then be stored in the core shack as a safeguard of the information for further studies or audits.

Photographic records were made in 3 phases: before logging, after marking the samples, and after cutting the cores, the latter having the sampling labels.

11. Sample Preparation, Analysis and Security

Sociedad Minera Reliquias maintains strict protocols and procedures concerning the preparation, analysis, and safety of samples produced from drilling and channel sampling programmes.

The author of this section reviewed the quality control processes and results of the 2022 programme. All figures and data presented in the tables in this section are those of the author unless otherwise stated.

11.1. Sample Preparation

11.1.1. Core Handling, Sampling and Security

Once the drill core was removed from the core barrel, it was placed in polypropylene boxes and closed. They were then transferred to a designated place inside the drill chamber by the contractor's personnel. Minera Reliquias personnel were responsible for the custody and transport of the core to the core shack. Once the boxes were received, the drill cores were cleaned, examined for missing or inverted pieces, recorded, and marked. Subsequently, the sections to be sampled were identified (sample_id), and the location where the QA/QC samples to be inserted were determined. The codes were recorded on the side of the boxes by support staff. Each marked sample section was cut in half by Minera Reliquias technicians. Half of the core was placed in a plastic bag with the numbered label, while the other half was placed back in the box and stored for future reference. The individual sample bags were placed in a box designed for this purpose together with a list of the samples, indicating the references for the preparation and the analytical methods to be analysed. Samples were taken to the laboratory in vans in batches of varying numbers of samples, following Sociedad Minera Reliquias' custody and transfer procedure.

All QA/QC samples were added to the batches in the core shack according to the instructions of the responsible geologist, following the procedure for insertion and percentage of QA/QC samples in each of the batches. Samples were sent to ALS Peru's sample preparation facility in Lima.

11.1.2. Channel Sample Collection Procedure

Channel samples were taken from rehabilitated mine workings (back of stopes, faces, pillars, etc.) as part of the exploration program. The entire process is described in the Mine Underground Sampling Protocol.

The first step in channel sampling was to locate and mark channels to be sampled at 4metre intervals using a known survey point within the mining workings. The maximum dimensions of each channel sample were determined to be 1.5 m long, 10 cm wide, and 3 to 5 cm deep. Channels should include the total width of the mineralized structure extending from the hanging wall to the footwall. Sampling was done using an electric percussion hammer to produce a channel perpendicular across the veins and mineralized structures.

Once the respective channels are marked, the surface should be cleaned to expose the wall rock surface (the use of a ladder or platform might be necessary to access high points). Channel samples should be extracted from the footwall to the hanging wall in such a manner that the sample material falls directly into a receptacle from which the sample material can be spread on a tarp, utilized to subsequently homogenize the complete sample. Afterwards, the sample material was bagged, labelled, and tied with seals. The channel sample number and distance were painted on the wall. The geologist described the sample with notes, a sketch, and filled in a sample card. Maximum weight of the samples should not exceed 3 kg. Locations of the channel samples were determined by surveyors using Total Station.

11.2. Geochemical Analysis

Samples from the 2022 programme, both drill holes and channels taken by Sociedad Minera Reliquias, were sent to ALS Peru S.A.'s facilities located in Bocanegra, Callao- Peru, for preparation and assaying.

ALS Peru S.A.'s facilities have received ISO/IEC 17025:2017 accreditation from the Standards Council of Canada. It has been audited and approved following the requirements specified in ISO 9001:2015 by the Colombian Institute of Technical Standards and Certification (ICONTEC).

ALS Peru S.A. is an independent laboratory and has been selected as the primary laboratory for Sociedad Minera Reliquias and has no interest in the properties or projects.

11.2.1. Sample Preparation, ALS Peru

- The samples are dried at temperatures above 100 °C;
- The primary crushing must meet the condition that more than 70% of the crushed sample passes through a 2 mm mesh, so that 250 g are subsequently separated using a rotary riffle splitter;
- The 250 g sub-sample is pulverised in such a way that more than 85% of the pulverised sample passes a 75-micron filter.

11.2.2. Geochemical Analysis, ALS Peru

- Samples were analysed for gold (Au) by fire assay (FA) with atomic absorption spectroscopy (AAS) from 30g aliquots. The results were reported in ppb, and the lower limit of detection is 5 ppb Au. The upper limit of detection was 10 000 ppb Au.
- When the gold assay results exceeded 10 g/t Au, the FA sample pulps were re-analysed with gravimetric finishing.
- Samples were analysed for a set of 33 elements by 4-acid digestion (ICP-AES). Results were reported in ppm or % depending on the element. Detection limits vary according to the element.
- When assay results for Ag, Cu, Pb, or Zn exceeded their detection limits (100 ppm Ag or 10 000 ppm Cu, Pb, or Zn), samples were re-analysed by AAS and reported in %.
- The test results were provided as Excel spreadsheets as well as the official certificate in PDF format.

11.3. Sample Security

The exploration area oversaw the custody of the drilling boxes, the rejects, and the pulps of the analyzed core samples.

The Mine Geology area managed the custody of sample rejects and pulps. Reject material from channel and core samples were stored separately in spaces designated by Sociedad Minera Reliquias within the Mining Unit.

The custody period for rejects and pulps was determined by the company's protocols and policies.

11.4. Quality Control and Quality Assurance

Sociedad Minera Reliquias has implemented a quality assurance/quality control (QA/QC) programme for its 2022 drilling programme, which included the insertion of coarse and fine blanks, certified reference material, pulp duplicates, rejects, and duplicates in the sample stream. Each group of 25 samples has one analytical blank, two certified standards, and a duplicate. The results of the control samples inserted as part of Sociedad Minera Reliquias' quality control programme are detailed in the following discussion.

The control samples purchased by Sociedad Minera Reliquias were prepared by Target Rocks Peru and OREAS Australia, and certified by Smee & Associates Consulting Ltd and ORE Pty Ltd, respectively.

11.4.1. Standard Reference Material Performance, Drill

Accuracy and precision in the chemical analysis were controlled by the insertion indicated in the Standard Reference Material (SRM). The insertion rate was one per 20 samples. The standards were used to detect problems in the assaying of samples in the batches submitted, such as sample-specific and long-term biases in the total data set.

A detailed summary of the results of the standards used in the 2022 drilling programme for the 60 drill holes is presented in Table 11-1. They include a total of 305 standard samples totaling 1,125 assay values.

SRM	Element	Certified Value	Number of Assays	Average value	Accuracy (%)	Precision (%)	Gross Outliers	Outliers	Passing QA/QC (%)
	Au g/t	0.12	105	0.12	0.72	5.62		3	97
EPIT23	Ag ppm	79.60	105	79.00	-0.93	2.90			100
	Pb %	1.97	105	1.93	-2.25	3.22		2	98
	Zn %	2.40	105	2.41	0.60	3.01		1	99
	Au g/t	0.71	94	0.73	2.45	3.82	1	2	98
PLSUL43	Ag ppm	144.00	94	14.05	0.36	3.08		2	99
	Cu %	4.31	94	4.23	-1.75	3.20		2	98
	Pb %	0.17	94	0.17	-1.83	4.08			100
	Zn %	1.01	94	0.96	-4.90	4.46		3	97
	Au g/t	0.16	47	0.16	1.65	3.02			100
HDRT-02	Ag g/t	321.00	47	321.00	-0.02	3.18			100
	Cu ppm	184.00	47	191.00	3.86	4.53			100
	Pb %	0.81	47	0.81	-0.29	4.31			100
	Zn %	1.12	47	1.15	2.77	4.39			100
Total			1,125				1	15	99

Table 11-1 Detailed results from standards used in 2022 Programme by Sociedad Minera Reliquiasduring the drilling programme. Source: The author.

Overall, the success rate is 98.7%, with 15 failed results. For each failed standard, Sociedad Minera Reliquias' QA/QC protocol states that a retest must be performed on the three (3) samples before and the three (3) samples after the failed standard.

The definition of a QA/QC failure is when the reported values of a standard are outside three standard deviations ("3SD") or two consecutive samples are outside two standard deviations ("2SD") in the same batch. Outliers are excluded from the calculation of the standard deviation. The certified values for the three types of standards used in the 2022 drill programme include values for Au, Ag, Cu, Pb, and Zn. These values cover a range of low (EPIT23), medium (PLSUL43), and high (HDRT-02) grades for these five elements.

For each standard and each element, the values were plotted in process order showing $\pm 5\%$ control lines, accuracy (%), and cumulative accuracy (%). Most of these graphs show characteristic features of analytical bias and a significant proportion show signs of instrumental drift to varying degrees.

Figure 11-1 shows the accuracy plot of the STD03-EPIT23 standard for silver. A probable higher bias can be distinguished in the first analysed shipments. A slight negative analytical bias is shown, as all points are located below the magenta dashed line representing the certified reference value.

Figure 11-1 Accuracy and cumulative accuracy chart for STD03-EPIT23-Ag. Source: The author.

Figure 11-2 shows the accuracy plot of the silver STD05-PLSUL43 standard, illustrating an example of probable instrumental drift by period.

Figure 11-2 Accuracy and cumulative accuracy chart for STD05-PLSUL43-Ag. Source: The author.

Figure 11-2 shows the accuracy graph of the silver ST10-HDRT02 standard, illustrating a negative trend at the beginning of the period in the cumulative accuracy curve (yellow dotted line).

Figure 11-3 Accuracy and cumulative accuracy chart for ST10-HDRT02-Ag. Source: The author.
An unbiased cumulative accuracy curve should oscillate smoothly around the 0% magenta dashed line (Rafini, 2015). In the graphs, silver exhibits positive or negative values. Individual biases are mostly contained within the acceptable ±5% control lines.

The accuracy of the standards varies from -4.9% to 3.9%. The accuracy of certified reference materials ranges from 2.9% to 5.6%, with an average of 3.75%. Overall, the results are typical for the industry and considered acceptable by the author of this report.

11.4.2. Standard Reference Material Performance, Channel

In the underground mine channel sampling, the same types of standards used in the 2022 drilling programme were inserted: low (EPIT23), medium (PLSUL43), and high (HDRT-02), using silver as the control element. In total, 142 standards were inserted, achieving a rate of 5.90% (2,407 total samples). A total of 659 assays were obtained, and only three values were above three times the standard deviation with a success rate of 99.5%.

SRM	Element	Certified Value	Number of Assays	Average value	Accuracy (%)	Precision (%)	Gross Outliers	Outliers	Passing QA/QC (%)
	Au g/t	0.12	51	0.12	2.38	4.69		1	98
EDIT22	Ag ppm	79.60	51	81.00	1.63	3.17			100
LFIIZS	Pb %	1.97	51	1.93	-1.96	3.35			100.0
	Zn %	2.40	51	2.43	1.23	2.64			100.0
	Au g/t	0.71	59	0.75	4.44	3.07		1	98
	Ag ppm	144.00	59	144.00	0.05	2.94			100.0
PLSUL43	Cu %	4.31	59	4.23	-1.82	2.39			100.0
	Pb %	0.17	59	0.17	-2.41	5.05			100.0
	Zn %	1.01	59	0.95	-6.11	4.47			100.0
	Au g/t	0.16	32	0.17	3.86	4.43		1	97
	Ag g/t	321.00	32	318.00	-0.90	3.92			100.0
HDRT-02	Cu ppm	184.00	32	189.00	2.73	4.03			100.0
	Pb %	0.81	32	0.81	0.20	3.36			100.0
	Zn %	1.12	32	1.16	3.24	4.88			100.0
Total			659				-	3	99

Table 11-2 Detailed results of the SRM used in the channel sampling of Sociedad Minera Reliquias.Sources: The author.

For each standard and each element, the values were plotted in process order showing $\pm 5\%$ control lines, accuracy (%), and cumulative accuracy (%). The graphs show characteristic features of analytical bias, and a significant proportion show signs of

instrumental drift to varying degrees. Figures 11-4, 11-5 and 11-6 show the results of the main control element (Silver). All curves exhibit positive or negative values. The individual biases are mostly contained within the acceptable control limits of \pm 5%.

Figure 11-4 Accuracy and cumulative accuracy chart for SMR STD03-EPIT23-Ag. Channel. Source: The author.

Figure 11-5 Accuracy and cumulative accuracy chart for STD05-PLSUL43-Ag. Channel. Source: The author.

Figure 11-6 Accuracy and cumulative accuracy chart for ST10-HDRT02-Ag. Channel. Source: The author.

The accuracy of the standards varies from -6.11% to 4.44% with an average of 0.17%. The accuracy of the certified reference materials ranges from 2.39% to 5.05% with an average of 3.68%. Overall, the results are typical for the industry and considered acceptable by the author of this section of the technical report.

11.4.3. Blank Samples, Drilling Programme 2022

The blank samples used in the 2022 Drilling Programme are composed of Certified Reference Materials (CRM). Two types of blank samples were used based on their grain size: fine and coarse. The fine blank samples (OREAS 21f) "have been prepared from quartz sand, to which 0.5% iron oxide has been added to produce a pinkish-tan-coloured pulp. This colouration gives the material an appearance of oxide origin (i.e., light orange-brown clay or light-coloured iron ore). It is characterised by extremely low background gold, less than 1 part per billion". The coarse blanks (Target Rocks TR19138, certified by Actlabs Canada, Report #A19-01146) are samples of crushed rock.

Blanks were inserted at a rate of one per 25 samples. A total of 161 coarse blanks and 124 fine blanks were inserted into the Programme 2022 batches. Sociedad Minera Reliquias' QA/QC protocol states that each batch must have at least one coarse and one fine blank. Reported values exceeding ten (10) times the detection limit of (0.5 ppm Ag, 25 ppb Au, 10 ppm Cu, 20 ppm Pb or 20 ppm Zn) in all elements must be re-analyzed in a batch of 25 samples. Table 11.2 presents a detailed summary of the results of the blank samples. A total of 51 blanks (7 fine and 44 coarse) failed and 96.4% of the assays passed successfully. The insertion sequence allows contamination monitoring because in case a coarse blank fails, but the fine blank does not, it is very likely that contamination occurred during the preparation phase because the fine blank does not undergo this phase. This was the case for the 44 failed coarse targets.

Blank Type Element Threshold		Total Assays	Number of Outliers	Passing QA/QC (%)	
	Ag	0.5 ppm	124		100.0
	Au	25 ppb	124		100.0
Fine Blanks	Cu	10 ppm	124		100.0
	Pb	20 ppm	124	3	97.6
	Zn	20 ppm	124	4	96.8
	Ag	0.5 ppm	161	1	99.4
	Au	25 ppb	161	1	99.4
Coarse	Cu	10 ppm	161	15	90.7
Dialiks	Pb	20 ppm	161	8	95.0
	Zn	20 ppm	161	19	88.2
Total				51	96.4

Table 11-3 Detailed summary of blank assays during the 2022 Programme. Source: The author.

The percentage passing QA/QC was high enough to claim an acceptable level of contamination within what the industry determines as good practice.

11.4.4. Blank Samples, Channel

A total of 43 coarse (1.8%) and 62 fine (2.6%) blanks were inserted into the 2022 Underground Sampling Programme batches. Reported values exceeding ten (10) times the detection limit (0.5 ppm Ag, 25 ppb Au, 10 ppm Cu, 20 ppm Pb or 20 ppm Zn) in all elements should be re-analysed in a batch of 25 samples. Table 11-4 presents a detailed summary of the blank samples results.

A total of 25 values of different elements (11 fines and 14 coarse) failed, and 95.2% of the assays passed successfully. The percentage passing the QC was high enough to claim an acceptable level of contamination.

Blank Type Element		Threshold	Threshold Total Assays		Passing QA/QC (%)
	Ag	0.5 ppm	62	1	98.4
	Au	25 ppb	62	0	100.0
Fine Blanks	Cu	10 ppm	62	3	95.2
	Pb	20 ppm	62	2	96.8
	Zn	20 ppm	62	5	91.9
Coarse	Ag	0.5 ppm	43	0	100.0

Table 11-4 Detailed summary of blank assays during the 2022 Mine's Sample. Sources: The author.

Total			1	25	05.2
	Zn	20 ppm	43	10	76.7
	Pb	20 ppm	43	4	90.7
	Cu	10 ppm	10 ppm 43		100.0
Blanks	Au	25 ppb	43	0	100.0

11.4.5. Duplicates, Drill Programme 2022

As part of Sociedad Minera Reliquias' QA/QC programme, one duplicate was inserted every 20 samples. Three types of duplicates - pulp, reject, and field (twin) duplicates - were used to assess accuracy at each stage from core cutting, preparation, and analysis.

Samples with a ratio of 300% or more (original: duplicate) were identified as outliers and filtered out for exclusion from the analysis. In addition, only results with values equal to or greater than 10 times the detection limit for each element were considered. For Programme 2022, 0 outliers were identified for the 746 results (239 pulps, 273 rejects and 234 twins).

The precision error estimate is represented as Absolute Relative Difference (ARD) according to the following equation:

$$ADR = 100 \cdot \frac{|dup - original|}{(dup + original)/2}$$

Table 11-5 presents a summary of the duplicate pair results for the five elements.

Table 11-5 Duplicate Results for drill samples.

Duplicate Type Element Grade		Outliers	Number of Filtered	Values Average ARD (%)	
	Ag	0.5 ppm	0	31	18.42
Durla	Au	25 ppb	0	3	3.69
Puip Duplicate	Cu	10 ppm	0	47	7.25
Dupileute	Pb	20 ppm	0	79	6.29
	Zn	20 ppm	0	79	3.31
	Total			239	
Weighted Average					7.03
	Ag	0.5 ppm	0	35	20.51
Coarse	Au	25 ppb	0	4	6.56
Dapileate	Cu	10 ppm	0	60	10.43

	Pb 20 ppm		0	87	10.48
	Zn	20 ppm	0	87	3.82
	Total			273	
Weighted Average					9.58
	Ag	0.5 ppm	0	29	31.24
Field	Au	25 ppb	0	2	4.08
Duplicate	Cu	10 ppm	0	43	29.00
(Twins)	Pb	20 ppm	0	80	19.97
	Zn	20 ppm	0	80	10.87
	Total			234	
Weighted Ave	erage				19.78

All average ARD values exceed 10% for silver in both pulps and rejects and greater than 20% in twins or field duplicates, reflecting the high primary heterogeneity of the rock itself at the sample scale. This is to be expected from epithermal deposits where the mineralization system does not consist of massive sulphides. Therefore, the author concludes that the values obtained from the duplicate samples in the 2022 programme are reliable and within the expected range.

11.4.6. Channel Sampling Duplicates

For the channel sampling program, the Sociedad Minera Reliquias staff took duplicate samples. Zero outliers were identified for the 577 results (177 pulps, 218 rejects, and 182 field duplicates). Values greater than ten times the detection limit were filtered to exclude them from the analysis. The ADR results for field duplicates greater than 20% show the high primary heterogeneity in this type of deposit.

Duplicate Type	Element	Minimum Grade	Outliers	Number of Filtered	Values Average ARD (%)
Pulp	Ag	0.5 ppm	0	37	6.59
Duplicate	Au	25 ppb	0	25	10.78
	Cu	10 ppm	0	37	4.74
	Pb	20 ppm	0	39	2.37
	Zn	20 ppm	0	39	2.37
	Total			177	

Table 11-6 Detailed summary of field duplicate results in Mine's Sample.

Weighted Ave	rage				4.94
Coarse	Ag	0.5 ppm	0	47	6.14
Duplicate	Au	25 ppb	0	25	10.51
	Cu	10 ppm	0	48	5.84
	Pb	20 ppm	0	49	4.15
	Zn	20 ppm	0	49	3.99
	Total			218	
Weighted Average					5.64
Field	Ag	0.5 ppm	0	39	24.61
Duplicate	Au	25 ppb	0	25	32.84
(Twins)	Cu	10 ppm	0	38	28.41
	Pb	20 ppm	0	40	26.19
	Zn	20 ppm	0	40	28.27
	Total			182	
Weighted Ave	rage				27.69

The Qualified Person responsible for this section has evaluated the QA/QC data provided by Sociedad Minera Reliquias for the 2022 drill programme and channel sampling. The author has not encountered any significant analytical problems. As a result, the sample preparation, assay, QA/QC, and safety methods used for the Reliquias Mine project meet generally accepted industry standards. In addition, the data are valid, with adequate quality for Mineral Resource Estimation. However, some improvements to the QA/QC programme are suggested, such as the production of reference standards with mineralized material from the project to improve the accuracy and precision of the assay process, the insertion of fine and coarse blanks in identified highly mineralized sections to assess carryover in the preparation and assay stages and avoiding taking samples less than 0.3 m in length.

12. Data Verification

During January 26 and 27, 2023, Antonio Cruz, qualified professional geologist, conducted a site visit to the Reliquias mine. During the visit, he reviewed the chambers where the underground drilling work was carried out, as well as the core shack and core storage area at the project. In addition, he reviewed drill collar locations, selected core intervals, sampling assays, the QA/QC program, downhole deviation data, and description of lithologies, alteration, and mineralization. Technical information related to the properties was reviewed on site with Sociedad Minera Reliquias technical staff and at the RREMIN SAC offices before and after the visit, using the historical information provided.

12.1. Drilling and Drill Hole Locations

During his visit to the properties, Antonio Cruz of RREMIN SAC reviewed and discussed drill hole selection, positioning and alignment procedures, and core handling with Sociedad Minera Reliquias personnel. It was determined that these procedures were adequate and followed mining industry's best practices. During the field visit, the QP validated the location of the drill collars and confirmed that the drill holes were properly marked and identified.

12.2. Diamond drill hole databases

The author of this section reviewed the borehole database. A visual check was carried out to verify the location of each collar concerning the topography and underground chambers and to detect any deviation anomalies. Collar tables, topography, geochemistry, lithology, and database structure were all checked for overlapping intervals or differences in final lengths. Some minor errors were detected and corrected.

12.3. Logging, Sampling and Assaying Procedures

During the site visit, core logging, sampling and storage procedures were discussed with Sociedad Minera Reliquias personnel. The mineralized sections of core were checked at the logging and storage facilities. All core boxes were properly labelled and stored on scaffolding designed for this purpose, properly labelled. It was possible to validate the presence of mineralization in reference core samples from the mineralized zones. Sociedad Minera Reliquias has established adequate QA/QC protocols, including the insertion of standards, blanks, and duplicates.

12.4. Assay

The borehole assay database was reviewed by the author of this section. Some differences were observed between the original certificates and the database. The differences represent only 0.18% of the values, so the differences are considered acceptable.

Mr. Antonio Cruz (MAIG), an independent qualified person, considers that the review of the information demonstrates the reliability of the data and protocols followed by Sociedad Minera Reliquias for its 2022 drilling and channel sampling programme. Therefore, he considers the database to be valid and of suitable quality for use in the Mineral Resource estimation in this report. In addition, it is confirmed that the mineralization identified in the various drill holes and channel samples from the main mineralized structures at the Reliquias mine is consistent with the styles and grades of mineralization described in Section-8.

13. Mineral Processing and Metallurgical Testing

In 2022, SMR has carried out preliminary metallurgical tests to develop flotation conditions for the recovery of Zinc, Silver, Lead, and Copper. The aim has also been to identify possible problems in the treatment of the samples. The tests were carried out in the pilot plant of Mercantil S.A., while the assaying of head grades was performed by C.H. Plenge & Cia S.A. laboratory (Plenge).

The samples used for the metallurgical tests come from the Matacaballo, Sacasipuedes, and Meteysaca veins. The results of this process will be used to implement a metallurgical model to demonstrate the optimal processing to maximize the recovery of economic metals in the concentrates.

The samples were extracted from the mineralized zones of existing mine workings accessing the MTC, SCS, and MYS veins. In addition, a 15% dilution was considered, due to the inclusion of material that is in contact with the mineralized zone. Table 13-1 presents the approximate mineralogical compositions using the stoichiometry method.

Mineral	MTC	SCS	MYS
Sphalerite	6.52	4.1	2.06
Galena	3.35	2.01	1.59
Pyrite	2.09	1.89	2.37
Chalcopyrite	1.54	0.93	0.44
Gangue	86.5	91.08	93.54
Total	100	100	100

Table 13-1 List of minerals of the obtained samples.

The results of the geochemical analyses for each composite are shown in Table 13-2.

Vein Cu % Pb % Ag ppm Zn % Au ppm Fe % MTC 0.56 3.05 129.28 4.60 0.30 3.47 60.32 SCS 0.34 1.83 2.89 0.14 3.3 0.16 1.45 MYS 102.8 1.45 0.24 3.36

Table 13-2 Head grades of working samples.

Preliminary flotation tests of the representative samples of MTC, SCS, and MYS are favorable. Therefore, it can be concluded that they have a high level of recovery in concentrate. Table 13-3 shows the conditions how the preliminary flotation tests were performed.

Float Conditions										
Assay	%<200m	рН	Cal	M1 *	C1*	MIBC				
MTC vein	49	8.4	0.5	0.31	0.025	0.01				
SCS vein	49	9.2	0.5	0.31	0.025	0.01				
MYS vein	53	9	0.5	0.31	0.025	0.01				
(*) M1	ZnSO4/CNNa (30/1)									
(*) C1	X-Z11/MT4064 (1.5/1)									

 Table 13-3 Conditions under which preliminary flotation tests were carried out by the Mercantil laboratory.

Table 13-4 shows the conditions under which the preliminary flotation tests were performed.

 Table 13-4 Results of preliminary flotation tests carried out by Mercantil laboratory.

					Grade					R	ecoveri	ngs (%)		Relac.
Test	Products	Cu	Pb	Ag	Zn	Au	Fe	Cu	Pb	Ag	Zn	Au	Fe	Conc.
		(%)	(%)	(ppm)	(%)	(g/t)	(%)							
	Conc.Roug Pb	3.36	18.03	774.77	24.84	1.65	6.14	95.48	92.19	93.28	88.88	70.23	28.11	6.13
MTC	Rel General	0.03	0.30	10.88	0.61	0.14	3.06	4.52	7.81	6.72	11.12	29.77	71.89	1.19
_	Cab. Calc.	0.57	3.19	135.50	4.56	0.38	3.56	100.00	100.00	100.00	100.00	100.00	100.00	
	Conc.Roug Pb	3.69	19.65	577.83	19.41	1.03	7.51	96.79	95.79	92.95	69.93	64.01	26.66	7.81
SCS	Rel General	0.02	0.13	6.44	1.23	0.09	3.04	3.21	4.21	7.05	30.07	35.99	73.34	1.15
	Cab. Calc.	0.49	2.63	79.63	3.56	0.21	3.61	100.00	100.00	100.00	100.00	100.00	100.00	
	Conc.Roug Pb	0.70	5.95	459.58	3.88	1.04	4.65	94.46	91.67	91.27	57.20	78.24	32.89	3.94
MYS	Rel General	0.01	0.18	14.96	0.99	0.10	3.23	5.54	8.33	8.73	42.80	21.76	67.11	1.34
	Cab. Calc.	0.19	1.65	127.80	1.72	0.34	3.59	100.00	100.00	100.00	100.00	100.00	100.00	

The author is of the opinion that these preliminary results are encouraging and are confirming CMC's historical recovery data, in addition, there is a high probability of achieving much more favorable recoveries that can generate high value marketable concentrates. These preliminary results were not used for the calculation of the NSR. For the calculation of the NSR, the historical recoveries of CMC were used.

14. Mineral Resources Estimate

14.1. Introduction

Sociedad Minera Reliquias hired RREMIN S.A.C. to carry out the estimate of Mineral Resources of the Reliquias Mine. Antonio Cruz (MAIG) and Gerardo Acuña are Qualified Persons as defined in NI 43-101 who belong to the technical team of RREMIN S.A.C.

The author of this section used available data shared by SMR, such as historical exploration, mine sampling, and drilling up to December 15, 2022, conducted by SMR. This information was the basis for the mineral resource estimates presented in this report. The effective date of the mineral resource estimate is December 16, 2022.

This Technical Report sets out the Mineral Resource estimate for the polymetallic veins: Ayayay, Matacaballo, Meteysaca, Sacasipuedes, and Sorpresa containing Ag-Zn-Pb-Cu-Au.

The author of this section created all tables and figures published in this section based on data provided by SMR.

14.2. Disclosure

The competent person is not aware of any issues that materially affect the results of the Mineral Resource estimates based on a full understanding of the analysed, reviewed, and verified information provided by SMR as of March 18th, 2023.

SMR follows the Environmental Regulations and Standards set out in Peruvian Law, so permits are in place. SMR has no legal action by the Peruvian state or third parties, the mining titles are in force, and the respective concession payments are up to date.

The Reliquias mine was operated until 2017, which is why the communities are aware of the mining activity and are well disposed towards it. Historical metallurgical information indicates that the processing plant has produced Zinc and Bulk concentrates without complications.

14.3. Estimation Methology

The information used for the estimation of the mineral resources of the Reliquias Mine was validated by Mr. Cruz by analysing geochemical results from drill core samples and underground channel samples (ALS Peru Laboratory S.A.) of the polymetallic veins (Ag-Zn-Pb -Cu-Au). The resource estimates were developed through the following steps:

- Data analysis and processing.
- Geological interpretation, modelling of the main lithologies, alteration, faults, and modelling of the mineralized structures.
- Separation of drilling samples and channels within each mineralized structure (veins).

- Basic statistical analysis by mineralized structure and element.
- Analysis and determination of extreme values per vein (top cuts).
- Determination of compositional length sizing and regularisation of drill and channel samples.
- Exploratory data analysis by veins, elements (silver, zinc, lead, copper, and gold), and density tests.
- Spatial continuity analysis (variography) of silver, zinc, lead, copper, and gold.
- Selection of estimation strategy and estimation parameters.
- Block modelling and grade estimation.
- Validation, classification, and discounting of mined zones for each mineralized structure.
- Calculation of Net Smelter Return (NSR), Silver Equivalent, and Cut-off (Variable Mine Cost).
- Declaration of Mineral Resources according to NSR and Cut-off.

14.4. Data Analysis

To normalize the historical silver values, they were transformed from troy ounces per tonne to grams per tonne before being integrated with the 2022 programme results. No further transformation of the data was required.

Collar, drill hole, lithology and assay data provided (in CSV format) by SMR were imported into Datamine StudioRM software and used to construct three-dimensional representations of drill holes and channels. Values analyzed below the detection limit were corrected to half the detection limit. Table 14-1 shows the number of drill holes and channels used in the geological structure construction and mineral resource estimation process. No significant discrepancies were identified at the time of data validation.

Company	Channe	els	Drill holes			
	Number	Meters	Number	Meters		
СМС	6,250	5,590.63	120	3,118.00		

Table 14-1 Diamond drilling and channels	available for mineral resource estimation.
--	--

SMR_ 2022	236	685.00	60	13,640.80
Total	6,486	6275.63	180	16,758.80

14.5. Geological Model

SMR asked the company Atticus (a company specialising in geological modelling based in Peru) to build the geological model and the main domains for the resource estimation. For this activity, Atticus used the historical data of Corporacion Minera Castrovirreyna (underground mapping, logs, etc.), as well as plans, systematic sections, underground mapping, interpretations, and the 2022 programme core logging carried out by SMR staff. The figure contains an isometric view showing the mineralized structures modeled by Atticus.

Figure 14-1 3D perspective of Reliquias mine showing veins wireframes.

The domains have been defined as mineralized structures based on the continuity of Ag-Zn-Pb-Cu-Au mineralization. These are represented by the Ayayay, Matacaballo, Meteysaca, Sacasipuedes, and Sorpresa veins, which have associated secondary mineralized structures and wireframes located between 4550 and 4150 masl. Table 14-2 shows the nomenclature for each structure considered for the estimation of mineral resources.

Vein System	Code
Ауауау	aya_p
	mtc_p
	mtc_s1a
Matacaballo	mtc_rfw1
	mtc_rfw3
	mtc_rfw4
	mtc_rhw1
	mts_p
	mtc_s
Metevsaca	mts_rfw1
Wieteysaca	mts_rfw2
	mts_rhw1
	mts_rhw2
	scs_p
Sacasipuedes	scs_rfw1
	scs_rhw1
	sor_p
Sorpresa	sor_rhw1
	tyc_p

Table 14-2 List of structures mineralized by Atticus, where; p:principal structure, s:south, hw:hanging wall, fw: foot wall, r: splay

The Ayayay System (Figure-14-2) is composed of a single vein with widths ranging from 0.5 m to 2.5 m and a N300° strike direction.

Figure 14-2 Isometric view looking northeast, of the Ayayay system. Source: SMR.

Figure 14-3 shows a plan view of the Matacaballo system, which is composed of 6 structures, in an east-west diirection.

Figure 14-3 Plan view of the Matacaballo system. Source: SMR.

La figura 14-4 shows a plan view of the Meteysaca system in a northwestsoutheast orientation. The system is composed of 5 individual structures.

Figure 14-4 Plan view of the Meteysaca system. Source: SMR.

The Sacasipuedes system is composed of 3 structures (Figure 14-5) and has an average width of 0.60 m and an orientation of N305°.

Figure 14-5 Plan view of the Sacasipuedes system. Source: SMR.

Figure 14-6 shows an isometric view of the Sorpresa system with three structures and a northwest-southeast orientation.

Figure 14-6 Isometric view of the Sorpresa system. Source: SMR.

14.6. Exploratory Data Analysis

14.6.1. Statistical Analysis

The author of this section has generated statistics of the drillhole and channel samples within each mineralized structure in order to determine the populations that may affect the estimate.

This analysis will allow us to understand the behaviour of each element and its relationship to spatial location.

Raw data developed for use in the statistical analysis of polymetallic structures are summarized in Table 14-3.

Vein	Grade	Count	Minimum	Maximum	Mean	Std. Dev.	C.V.*
	Ag ppm	60	0.00	2300.00	172.00	411.63	2.39
	Au ppm	56	0.00	0.76	0.11	0.16	1.42
	Pb pct	60	0.01	13.60	2.37	3.55	1.50
	Cu pct	60	0.00	4.47	0.63	0.90	1.44
aya_p	Zn pct	60	0.02	21.10	3.22	4.50	1.40
	As ppm	56	52.00	3620.00	910.00	893.84	0.98
	Sb ppm	56	25.00	5450.00	980.00	1250.87	1.28
	Fe pct	56	0.62	10.50	3.29	1.74	0.53
	Ag ppm	398	0.25	1015.00	82.00	118.13	1.44
	Au ppm	286	0.00	8.23	0.30	0.80	2.71
	Pb pct	398	0.00	19.70	2.62	3.54	1.35
unte u	Cu pct	394	0.00	3.43	0.35	0.56	1.58
mtc_p	Zn pct	398	0.00	26.90	3.99	4.96	1.24
	As ppm	286	12.00	10000.00	773.00	1103.33	1.43
	Sb ppm	286	11.00	10000.00	755.00	1143.27	1.51
	Fe pct	286	0.99	9.25	3.45	1.45	0.42
	Ag ppm	14	6.10	107.00	32.00	30.75	0.96
	Au ppm	14	0.01	0.16	0.07	0.05	0.77
	Pb pct	14	0.10	2.80	0.97	0.84	0.86
mto rfuil	Cu pct	14	0.02	0.98	0.17	0.24	1.44
mtc_nwi	Zn pct	14	0.19	6.60	1.80	2.01	1.11
	As ppm	14	234.00	5930.00	1242.00	1706.21	1.37
	Sb ppm	14	188.00	1435.00	500.00	385.82	0.77
	Fe pct	14	2.00	5.44	3.38	0.95	0.28
	Ag ppm	41	0.25	149.00	35.00	38.50	1.10
	Au ppm	41	0.00	0.43	0.08	0.09	1.20
	Pb pct	41	0.00	9.50	1.71	2.25	1.31
mtc rfw3	Cu pct	41	0.00	1.55	0.23	0.33	1.46
Inte_IIW5	Zn pct	41	0.03	12.30	2.34	2.96	1.26
	As ppm	41	14.00	3060.00	670.00	771.86	1.15
	Sb ppm	41	24.00	1590.00	311.00	334.89	1.08
	Fe pct	41	1.03	5.53	2.96	1.03	0.35
	Ag ppm	10	3.70	49.80	30.00	17.50	0.58
	Au ppm	10	0.03	0.05	0.04	0.01	0.19
mtc_rfw4	Pb pct	10	0.05	4.00	1.28	1.43	1.12
	Cu pct	10	0.00	0.44	0.20	0.18	0.87
	Zn pct	10	0.06	18.80	4.78	7.12	1.49

Table 14-3 Raw data for polymetallic veins. Source: The author.

Vein	Grade	Count	Minimum	Maximum	Mean	Std. Dev.	C.V.*
	As ppm	10	480.00	2090.00	1515.00	635.14	0.42
	Sb ppm	10	94.00	2010.00	812.00	670.10	0.82
	Fe pct	10	1.22	4.26	3.27	0.92	0.28
	Ag ppm	17	12.50	510.00	105.00	158.35	1.51
	Au ppm	17	0.01	1.01	0.27	0.31	1.11
	Pb pct	17	0.46	7.90	2.21	1.94	0.88
mata shoul	Cu pct	17	0.04	4.86	1.00	1.58	1.58
mtc_mw1	Zn pct	17	0.19	13.10	3.67	4.00	1.09
	As ppm	17	88.00	1065.00	468.00	279.86	0.60
	Sb ppm	17	51.00	1010.00	235.00	236.74	1.01
	Fe pct	17	1.62	7.63	3.51	1.90	0.54
	Ag ppm	17	0.25	165.00	47.00	57.13	1.23
	Au ppm	16	0.01	13.75	1.95	4.47	2.30
	Pb pct	17	0.00	3.01	0.78	0.88	1.13
	Cu pct	17	0.00	0.23	0.07	0.08	1.05
mtc_s1a	Zn pct	17	0.02	2.80	0.99	0.92	0.93
	As ppm	16	20.00	1375.00	318.00	351.92	1.11
	Sb ppm	16	29.00	767.00	193.00	224.24	1.16
	Fe pct	16	2.04	3.45	2.56	0.41	0.16
	Ag ppm	27	1.10	235.00	40.00	57.13	1.41
	Au ppm	26	0.01	0.36	0.09	0.09	1.05
	Pb pct	27	0.06	10.50	1.11	2.12	1.90
mate c	Cu pct	27	0.00	0.78	0.11	0.19	1.83
mic_s	Zn pct	27	0.10	7.60	1.35	1.96	1.45
	As ppm	26	22.00	3030.00	505.00	634.05	1.26
	Sb ppm	26	21.00	3960.00	306.00	752.34	2.46
	Fe pct	26	1.50	9.08	3.43	1.75	0.51
	Ag ppm	169	2.10	2710.00	234.00	342.81	1.46
	Au ppm	168	0.01	5.99	0.52	0.87	1.66
	Pb pct	169	0.02	14.00	2.16	2.40	1.11
and a	Cu pct	169	0.00	3.90	0.35	0.55	1.54
mts_p	Zn pct	169	0.04	17.60	3.15	3.35	1.06
	As ppm	168	67.00	6280.00	754.00	785.47	1.04
	Sb ppm	168	32.00	8600.00	1106.00	1345.49	1.22
	Fe pct	168	0.67	9.46	3.24	1.59	0.49
	Ag ppm	16	3.80	1180.07	191.00	319.67	1.67
mate inford	Au ppm	14	0.02	2.55	0.60	0.75	1.25
mts_rtw1	Pb pct	16	0.04	3.80	0.90	1.22	1.35
	Cu pct	16	0.01	0.67	0.16	0.20	1.24

Vein	Grade	Count	Minimum	Maximum	Mean	Std. Dev.	C.V.*
	Zn pct	16	0.05	7.40	2.15	2.55	1.19
	As ppm	14	64.00	1415.00	387.00	361.93	0.93
	Sb ppm	14	39.00	2950.00	460.00	729.80	1.59
	Fe pct	14	2.08	4.81	3.06	0.89	0.29
	Ag ppm	17	0.70	694.00	67.00	162.37	2.42
	Au ppm	16	0.00	1.21	0.14	0.30	2.08
	Pb pct	17	0.00	2.10	0.28	0.56	1.99
mate after 2	Cu pct	17	0.00	0.50	0.06	0.12	1.84
mts_nwz	Zn pct	17	0.01	3.70	0.55	1.14	2.06
	As ppm	16	25.00	358.00	129.00	115.31	0.89
	Sb ppm	16	27.00	1710.00	212.00	394.42	1.86
	Fe pct	16	1.66	3.80	2.71	0.77	0.28
	Ag ppm	6	6.80	52.20	23.00	16.53	0.72
	Au ppm	6	0.03	0.16	0.07	0.04	0.61
	Pb pct	6	0.12	2.30	0.69	0.81	1.18
nata abuut	Cu pct	6	0.01	0.16	0.05	0.05	1.03
mts_rnw1	Zn pct	6	0.20	3.60	1.42	1.34	0.95
	As ppm	6	87.00	501.00	224.00	153.26	0.68
	Sb ppm	6	129.00	936.00	324.00	282.29	0.87
	Fe pct	6	1.44	3.91	2.28	0.82	0.36
	Ag ppm	41	0.70	893.00	148.00	221.68	1.50
	Au ppm	41	0.00	1.46	0.22	0.30	1.39
	Pb pct	41	0.03	11.80	1.16	2.50	2.16
mtc rhw2	Cu pct	41	0.00	1.45	0.17	0.34	2.04
IIIts_IIIwz	Zn pct	41	0.05	9.70	1.48	2.37	1.60
	As ppm	41	39.00	2560.00	486.00	576.55	1.19
	Sb ppm	41	10.00	5750.00	746.00	1208.81	1.62
	Fe pct	41	1.13	9.42	3.48	1.38	0.40
	Ag ppm	123	1.50	1185.00	83.00	142.23	1.71
	Au ppm	103	0.02	21.20	0.33	2.07	6.33
	Pb pct	123	0.02	31.80	2.42	4.48	1.85
scs n	Cu pct	122	0.00	12.20	0.51	1.33	2.62
3C3_p	Zn pct	123	0.07	25.40	3.18	4.57	1.44
	As ppm	102	33.00	4070.00	554.00	758.48	1.37
	Sb ppm	102	11.00	2510.00	378.00	546.09	1.45
	Fe pct	106	1.26	11.30	3.61	1.65	0.46
	Ag ppm	42	0.25	686.14	103.00	134.73	1.31
scs_rfw1	Au ppm	25	0.01	0.18	0.07	0.05	0.61
	Pb pct	42	0.03	19.00	2.89	3.66	1.26

Vein	Grade	Count	Minimum	Maximum	Mean	Std. Dev.	C.V.*
	Cu pct	35	0.00	4.15	0.66	1.06	1.62
	Zn pct	42	0.04	16.80	4.40	4.42	1.00
	As ppm	25	12.00	1075.00	348.00	309.19	0.89
	Sb ppm	25	12.00	2410.00	295.00	472.29	1.60
	Fe pct	25	0.32	5.68	3.56	1.14	0.32
	Ag ppm	9	1.40	107.00	24.00	31.72	1.32
	Au ppm	9	0.01	0.25	0.09	0.09	1.04
	Pb pct	9	0.02	1.40	0.45	0.49	1.10
coc rhuut	Cu pct	9	0.01	0.12	0.04	0.04	0.98
SCS_MW1	Zn pct	9	0.04	2.80	0.84	0.92	1.10
	As ppm	9	52.00	1240.00	586.00	371.43	0.63
	Sb ppm	9	32.00	1010.00	239.00	287.49	1.20
	Fe pct	9	1.61	3.48	2.29	0.51	0.22
	Ag ppm	9	10.50	376.00	91.00	110.95	1.21
	Au ppm	9	0.06	0.47	0.21	0.12	0.55
	Pb pct	9	0.02	3.80	1.10	1.27	1.15
cor rhw1	Cu pct	9	0.00	1.17	0.33	0.43	1.29
SOI_IIIWI	Zn pct	9	0.03	6.70	1.89	2.19	1.16
	As ppm	9	132.00	1130.00	470.00	378.13	0.80
	Sb ppm	9	21.00	3590.00	730.00	1097.29	1.50
	Fe pct	9	3.40	6.85	4.47	0.99	0.22
	Ag ppm	31	1.90	268.00	70.00	73.64	1.05
	Au ppm	31	0.01	5.86	0.33	1.02	3.12
	Pb pct	31	0.19	6.80	1.96	2.00	1.02
sor n	Cu pct	31	0.01	2.08	0.44	0.56	1.26
301_p	Zn pct	31	0.38	18.60	3.70	5.03	1.36
	As ppm	31	62.00	5140.00	609.00	929.47	1.53
	Sb ppm	31	21.00	2390.00	331.00	528.14	1.60
	Fe pct	31	2.52	6.10	3.99	1.00	0.25
	Ag ppm	4	0.60	58.40	28.00	20.78	0.73
	Au ppm	4	0.01	0.19	0.10	0.06	0.61
	Pb pct	4	0.01	1.10	0.39	0.42	1.09
tvc n	Cu pct	4	0.00	0.16	0.06	0.06	0.99
urc_h	Zn pct	4	0.02	2.30	0.82	0.88	1.08
	As ppm	4	34.00	180.00	117.00	61.01	0.52
	Sb ppm	4	15.00	31.00	23.00	7.29	0.31
	Fe pct	4	3.65	4.16	3.91	0.19	0.05

(*) Coefficient of variation.

14.6.2. Compositing

The samples were composited so that the samples used in the spatial continuity analysis and the estimations have a similar length.

Sample lengths were examined globally and for each vein (Table 14-4), resulting in a support length equal to 1 metre. The composited data and the raw sample data were compared to ensure that they did not result in loss of sample length or metal. To analyse the existence of subdomains, histograms, probability plots, and scatter plots by mineralized structure were performed. No subdomains affecting stationarity were identified.

Vein	Grade	Count	Minimum	Maximum	Mean	Variance	Std. Dev.
	Ag ppm	36	0.00	991.00	122.00	182.00	1.50
	Au ppm	33	0.01	0.41	0.09	0.10	1.07
	Pb pct	36	0.02	13.01	2.06	3.17	1.54
21/2 P	Cu pct	36	0.00	4.03	0.56	0.77	1.37
aya_p	Zn pct	36	0.06	19.67	2.94	4.23	1.44
	As ppm	33	57.00	3230.00	885.00	800.00	0.90
	Sb ppm	33	42.00	4214.00	858.00	911.00	1.06
	Fe pct	33	1.30	9.63	3.32	1.44	0.43
	Ag ppm	282	2.00	793.00	85.00	110.00	1.29
	Au ppm	170	0.00	7.40	0.32	0.74	2.31
	Pb pct	282	0.00	18.04	2.59	3.17	1.22
mtc n	Cu pct	278	0.00	2.73	0.37	0.51	1.40
intc_p	Zn pct	282	0.00	23.74	3.93	4.32	1.10
	As ppm	170	23.00	6815.00	773.00	966.00	1.25
	Sb ppm	170	17.00	6893.00	728.00	948.00	1.30
	Fe pct	170	1.14	8.34	3.45	1.32	0.38
	Ag ppm	9	8.00	63.00	34.00	18.00	0.53
	Au ppm	9	0.01	0.16	0.07	0.05	0.69
	Pb pct	9	0.61	2.10	1.17	0.48	0.41
mto rfuil	Cu pct	9	0.02	0.47	0.16	0.14	0.88
IIIIC_IIW1	Zn pct	9	0.38	5.20	2.15	1.61	0.75
	As ppm	9	234.00	5930.00	1429.00	1759.00	1.23
	Sb ppm	9	220.00	1230.00	513.00	329.00	0.64
	Fe pct	9	2.00	4.61	3.36	0.81	0.24
mtc rfw2	Ag ppm	21	0.00	149.00	37.00	35.00	0.95
aya_p mtc_p mtc_rfw1 mtc_rfw3	Au ppm	21	0.00	0.43	0.08	0.10	1.18

Table 14-4 Statistical summary for each composite vein. Source: SMR.

Vein	Grade	Count	Minimum	Maximum	Mean	Variance	Std. Dev.
	Pb pct	21	0.00	9.50	1.76	2.25	1.28
	Cu pct	21	0.00	1.55	0.24	0.34	1.40
	Zn pct	21	0.03	12.30	2.49	2.93	1.18
	As ppm	21	14.00	1781.00	545.00	473.00	0.87
	Sb ppm	21	31.00	1235.00	331.00	290.00	0.88
	Fe pct	21	1.12	5.47	2.90	0.91	0.31
	Ag ppm	7	4.00	50.00	24.00	18.00	0.73
	Au ppm	7	0.03	0.05	0.04	0.01	0.22
	Pb pct	7	0.05	4.00	0.95	1.31	1.38
and a strength of the	Cu pct	7	0.00	0.44	0.15	0.17	1.10
mtc_rrw4	Zn pct	7	0.06	18.80	3.53	6.33	1.79
	As ppm	7	480.00	2090.00	1424.00	677.00	0.48
	Sb ppm	7	94.00	2010.00	640.00	634.00	0.99
	Fe pct	7	1.22	4.26	3.04	0.95	0.31
	Ag ppm	9	20.00	267.00	74.00	83.00	1.11
	Au ppm	9	0.01	0.50	0.18	0.16	0.90
	Pb pct	9	0.46	5.69	2.20	1.58	0.72
mete ubuut	Cu pct	9	0.09	3.28	0.75	1.00	1.34
mtc_rnw1	Zn pct	9	0.19	13.10	3.93	3.59	0.91
	As ppm	9	88.00	949.00	422.00	254.00	0.60
	Sb ppm	9	52.00	828.00	249.00	226.00	0.91
	Fe pct	9	1.62	6.26	3.02	1.49	0.50
	Ag ppm	11	0.00	165.00	46.00	59.00	1.28
	Au ppm	10	0.01	8.36	1.02	2.47	2.41
	Pb pct	11	0.00	3.01	0.79	0.93	1.18
mto clo	Cu pct	11	0.00	0.23	0.07	0.07	1.06
mic_sia	Zn pct	11	0.02	2.80	0.87	0.81	0.93
	As ppm	10	20.00	1375.00	407.00	411.00	1.01
	Sb ppm	10	30.00	767.00	204.00	243.00	1.19
	Fe pct	10	2.04	3.27	2.63	0.41	0.15
	Ag ppm	18	1.00	235.00	39.00	55.00	1.41
	Au ppm	16	0.01	0.36	0.09	0.09	1.04
	Pb pct	18	0.06	5.79	0.99	1.55	1.56
mto o	Cu pct	18	0.00	0.56	0.09	0.15	1.61
muc_s	Zn pct	18	0.10	5.10	1.18	1.50	1.27
	As ppm	16	55.00	3030.00	593.00	711.00	1.20
	Sb ppm	16	22.00	3960.00	378.00	930.00	2.46
	Fe pct	16	1.50	7.22	3.15	1.39	0.44
mts_p	Ag ppm	137	2.00	2710.00	241.00	310.00	1.29

Vein	Grade	Count	Minimum	Maximum	Mean	Variance	Std. Dev.
	Au ppm	136	0.02	5.81	0.51	0.75	1.46
	Pb pct	137	0.03	9.90	2.29	2.27	0.99
	Cu pct	137	0.00	3.13	0.35	0.47	1.32
	Zn pct	137	0.04	17.60	3.23	3.12	0.96
	As ppm	136	95.00	3960.00	767.00	681.00	0.89
	Sb ppm	136	33.00	8600.00	1166.00	1343.00	1.15
	Fe pct	136	0.67	9.46	3.26	1.53	0.47
	Ag ppm	13	4.00	1180.00	199.00	310.00	1.55
	Au ppm	11	0.02	2.55	0.65	0.77	1.19
	Pb pct	13	0.05	3.19	0.90	1.07	1.19
under uffixed	Cu pct	13	0.01	0.67	0.17	0.19	1.13
mts_riw1	Zn pct	13	0.06	7.40	1.96	2.29	1.17
	As ppm	11	64.00	958.00	374.00	269.00	0.72
	Sb ppm	11	54.00	1495.00	428.00	415.00	0.97
	Fe pct	11	2.08	4.81	3.08	0.89	0.29
	Ag ppm	11	1.00	435.00	66.00	126.00	1.90
	Au ppm	10	0.00	1.21	0.19	0.35	1.82
	Pb pct	11	0.00	1.40	0.34	0.50	1.48
mate after 2	Cu pct	11	0.00	0.50	0.08	0.14	1.71
mts_rrw2	Zn pct	11	0.00	3.70	0.70	1.14	1.62
	As ppm	10	26.00	329.00	115.00	93.00	0.81
	Sb ppm	10	28.00	1122.00	195.00	313.00	1.61
	Fe pct	10	1.76	3.63	2.70	0.67	0.25
	Ag ppm	3	16.00	32.00	25.00	7.00	0.27
	Au ppm	3	0.03	0.11	0.07	0.03	0.43
	Pb pct	3	0.23	1.36	0.72	0.47	0.66
mtc rhw1	Cu pct	3	0.03	0.08	0.06	0.02	0.40
IIIIS_IIIW1	Zn pct	3	1.26	2.15	1.60	0.39	0.24
	As ppm	3	156.00	298.00	231.00	58.00	0.25
	Sb ppm	3	175.00	530.00	315.00	154.00	0.49
	Fe pct	3	1.61	3.12	2.47	0.63	0.26
	Ag ppm	28	1.00	893.00	139.00	217.00	1.56
	Au ppm	28	0.00	1.46	0.22	0.31	1.40
	Pb pct	28	0.04	11.80	1.13	2.34	2.08
mtc rhui?	Cu pct	28	0.00	1.09	0.17	0.29	1.73
mus_mwz	Zn pct	28	0.05	9.70	1.47	2.34	1.59
	As ppm	28	42.00	2060.00	479.00	546.00	1.14
	Sb ppm	28	44.00	5750.00	752.00	1256.00	1.67
	Fe pct	28	1.13	7.12	3.54	1.04	0.29

Vein	Grade	Count	Minimum	Maximum	Mean	Variance	Std. Dev.
	Ag ppm	77	2.00	603.00	87.00	109.00	1.25
	Au ppm	59	0.02	7.66	0.25	0.98	3.86
	Pb pct	77	0.03	23.59	2.36	3.70	1.57
	Cu pct	76	0.00	6.44	0.49	0.92	1.86
scs_p	Zn pct	77	0.07	19.74	3.13	3.82	1.22
	As ppm	57	33.00	2504.00	493.00	535.00	1.09
	Sb ppm	57	14.00	1787.00	348.00	404.00	1.16
	Fe pct	59	1.31	7.31	3.60	1.35	0.38
	Ag ppm	35	0.00	686.00	119.00	141.00	1.18
	Au ppm	16	0.01	0.15	0.08	0.04	0.56
	Pb pct	35	0.03	15.19	2.98	3.30	1.11
coc rfuil	Cu pct	28	0.00	4.15	0.75	1.06	1.42
SCS_HW1	Zn pct	35	0.12	16.80	4.84	4.41	0.91
	As ppm	16	46.00	1075.00	357.00	319.00	0.89
	Sb ppm	16	17.00	2410.00	318.00	557.00	1.75
	Fe pct	16	1.63	5.68	3.77	1.08	0.29
	Ag ppm	7	5.00	107.00	30.00	34.00	1.14
	Au ppm	7	0.02	0.25	0.10	0.09	0.92
	Pb pct	7	0.02	1.40	0.54	0.51	0.95
ccc_rbw1	Cu pct	7	0.01	0.12	0.04	0.04	0.85
SCS_IIIW1	Zn pct	7	0.04	2.80	0.99	0.95	0.96
	As ppm	7	52.00	1240.00	659.00	362.00	0.55
	Sb ppm	7	32.00	1010.00	282.00	311.00	1.10
	Fe pct	7	1.61	3.48	2.26	0.57	0.25
	Ag ppm	16	9.00	268.00	79.00	71.00	0.90
	Au ppm	16	0.02	2.62	0.29	0.62	2.13
	Pb pct	16	0.47	6.42	2.05	1.48	0.72
sor n	Cu pct	16	0.04	1.84	0.44	0.41	0.94
301_p	Zn pct	16	0.42	17.72	3.60	4.05	1.12
	As ppm	16	78.00	5140.00	786.00	1190.00	1.51
	Sb ppm	16	30.00	2390.00	510.00	657.00	1.29
	Fe pct	16	2.52	5.58	3.84	0.82	0.21
	Ag ppm	5	15.00	248.00	84.00	90.00	1.07
	Au ppm	5	0.07	0.35	0.21	0.09	0.44
	Pb pct	5	0.09	2.24	1.01	0.90	0.89
sor_rhw1	Cu pct	5	0.01	1.09	0.30	0.41	1.38
	Zn pct	5	0.07	3.69	1.70	1.58	0.93
	As ppm	5	132.00	868.00	430.00	311.00	0.72
	Sb ppm	5	44.00	2197.00	664.00	836.00	1.26

Vein	Grade	Count	Minimum	Maximum	Mean	Variance	Std. Dev.
	Fe pct	5	3.41	5.89	4.45	0.80	0.18
	Ag ppm	3	22.00	58.00	37.00	16.00	0.42
	Au ppm	3	0.10	0.17	0.13	0.03	0.22
	Pb pct	3	0.20	1.10	0.51	0.42	0.83
tua a	Cu pct	3	0.04	0.16	0.08	0.06	0.74
tyc_p	Zn pct	3	0.42	2.30	1.07	0.87	0.82
	As ppm	3	78.00	180.00	143.00	46.00	0.32
	Sb ppm	3	15.00	31.00	25.00	7.00	0.28
	Fe pct	3	3.82	4.16	3.99	0.14	0.03

14.6.3. Capping

The composite data was analyzed to determine the impact of high-grade outliers on the total sampled populations.

The author evaluated the grades of the main deposit metals (Ag, Zn, Pb, Cu, and Au) to identify the presence and nature of extreme grade values using the Global TopCut analysis tool of the Supervisor v8.13 software. For this purpose, the sample histogram, mean and variance plot, log probability plot, metal accumulation curve, and the spatial location of the extreme values were examined. Table 14-5 shows the top cuts for each mineralized structure. In addition, the qualified person has determined that if insufficient data is available to determine the appropriate cut-off values for a vein splay, the values for the main vein have been applied.

The probability plot should be smooth when there is a steady increase in the grade with a constant decrease in the probability of samples above that grade. A sharp deviation from this curve generally serves to define a population of samples that makes a significant jump in grade compared to the relative percentage of samples above that grade. This could represent a small population of outliers or a highgrade population that would need to be modeled differently.

Vein	Grade	Top Cut	Count	Minimum	Maximum	Mean	Mean Top Cut	Variance	Std. Dev.	Difference
aya_p	Ag ppm	700	36	0.00	700	122	122	182	1.5	0%
	Au ppm	0.3	33	0.01	0.3	0.09	0.09	0.1	1.07	-5%
	Pb pct	10	36	0.02	10	2.06	2.06	3.17	1.54	0%
	Cu pct	3	36	0.00	3	0.56	0.56	0.77	1.37	0%
	Zn pct	10	36	0.06	10	2.94	2.64	4.23	1.44	-11%
	As ppm	2000	33	57.00	2000	885	788	800	0.9	-12%
	Sb ppm	2000	33	42.00	2000	858	787	911	1.06	-9%

Table 14	-5 Topcu	t thresholds	by vein.
----------	----------	--------------	----------

Vein	Grade	Top Cut	Count	Minimum	Maximum	Mean	Mean Top Cut	Variance	Std. Dev.	Difference
	Fe pct	4.5	33	1.30	4.5	3.32	3.16	1.44	0.43	-5%
	Ag ppm	700	282	2.00	700	85	85	110	1.29	0%
	Au ppm	5	170	0.00	5	0.32	0.28	0.74	2.31	-14%
	Pb pct	14	282	0.00	14	2.59	2.59	3.17	1.22	0%
mto n	Cu pct	2	278	0.00	2	0.37	0.36	0.51	1.4	0%
mtc_p	Zn pct	16	282	0.00	16	3.93	3.93	4.32	1.1	0%
	As ppm	2500	170	23.00	2500	773	680	966	1.25	-14%
	Sb ppm	2500	170	17.00	2500	728	650	948	1.3	-12%
	Fe pct	6	170	1.14	6	3.45	3.4	1.32	0.38	-2%
	Ag ppm	60	9	8.00	60	34	34	18	0.53	0%
	Au ppm	0.15	9	0.01	0.15	0.07	0.07	0.05	0.69	0%
	Pb pct	2	9	0.61	2	1.17	1.13	0.48	0.41	-3%
mto rfuil	Cu pct	0.4	9	0.02	0.4	0.16	0.16	0.14	0.88	0%
mtc_nw1	Zn pct	4.5	9	0.38	4.5	2.15	1.87	1.61	0.75	-15%
	As ppm	4000	9	234.00	4000	1429	1290	1759	1.23	-11%
	Sb ppm	1000	9	220.00	1000	513	497	329	0.64	-3%
	Fe pct	3.5	9	2.00	3.5	3.36	3.3	0.81	0.24	-2%
	Ag ppm	85	21	0.00	85	37	36	35	0.95	-3%
	Au ppm	0.35	21	0.00	0.35	0.08	0.08	0.1	1.18	0%
	Pb pct	8	21	0.00	8	1.76	1.74	2.25	1.28	-1%
mta rfui?	Cu pct	1	21	0.00	1	0.24	0.23	0.34	1.4	-4%
mtc_nws	Zn pct	10	21	0.03	10	2.49	2.45	2.93	1.18	-1%
	As ppm	1000	21	14.00	1000	545	492	473	0.87	-11%
	Sb ppm	700	21	31.00	700	331	317	290	0.88	-4%
	Fe pct	5	21	1.12	5	2.9	2.79	0.91	0.31	-4%
	Ag ppm	49	7	4.00	49	24	23	18	0.73	-7%
	Au ppm	0.05	7	0.03	0.05	0.04	0.04	0.01	0.22	-2%
	Pb pct	3.5	7	0.05	3.5	0.95	0.77	1.31	1.38	-24%
mtc rfw4	Cu pct	0.4	7	0.00	0.4	0.15	0.14	0.17	1.1	-12%
IIIIC_IIW4	Zn pct	15	7	0.06	15	3.53	2.5	6.33	1.79	-42%
	As ppm	2000	7	480.00	2000	1424	1366	677	0.48	-4%
	Sb ppm	1500	7	94.00	1500	640	546	634	0.99	-17%
	Fe pct	4.26	7	1.22	4.26	3.04	3.01	0.95	0.31	-1%
	Ag ppm	250	9	20.00	250	74	74	83	1.11	-1%
	Au ppm	0.45	9	0.01	0.45	0.18	0.18	0.16	0.9	0%
mtc rhw1	Pb pct	5	9	0.46	5	2.2	2.2	1.58	0.72	0%
muc_mw1	Cu pct	3	9	0.09	3	0.75	0.69	1	1.34	-9%
	Zn pct	11	9	0.19	11	3.93	3.42	3.59	0.91	-15%
	As ppm	600	9	88.00	600	422	394	254	0.6	-7%

Vein	Grade	Top Cut	Count	Minimum	Maximum	Mean	Mean Top Cut	Variance	Std. Dev.	Difference
	Sb ppm	400	9	52.00	400	249	235	226	0.91	-6%
	Fe pct	5	9	1.62	5	3.02	2.86	1.49	0.5	-6%
	Ag ppm	150	11	0.00	150	46	44	59	1.28	-5%
	Au ppm	5	10	0.01	5	1.02	1.02	2.47	2.41	0%
	Pb pct	3	11	0.00	3	0.79	0.79	0.93	1.18	0%
mate of e	Cu pct	0.2	11	0.00	0.2	0.07	0.06	0.07	1.06	-6%
mtc_s1a	Zn pct	2.5	11	0.02	2.5	0.87	0.87	0.81	0.93	0%
	As ppm	1000	10	20.00	1000	407	292	411	1.01	-40%
	Sb ppm	550	10	30.00	550	204	153	243	1.19	-33%
	Fe pct	3	10	2.04	3	2.63	2.62	0.41	0.15	-1%
	Ag ppm	200	18	1.00	200	39	39	55	1.41	0%
	Au ppm	0.3	16	0.01	0.3	0.09	0.08	0.09	1.04	-5%
	Pb pct	4	18	0.06	4	0.99	0.99	1.55	1.56	0%
	Cu pct	0.4	18	0.00	0.4	0.09	0.09	0.15	1.61	0%
mtc_s	Zn pct	4	18	0.10	4	1.18	1.18	1.5	1.27	0%
	As ppm	1500	16	55.00	1500	593	467	711	1.2	-27%
	Sb ppm	1000	16	22.00	1000	378	225	930	2.46	-68%
	Fe pct	4	16	1.50	4	3.15	2.99	1.39	0.44	-5%
	Ag ppm	1500	137	2.00	1,500	241	224	310	1.29	-8%
	Au ppm	3	136	0.02	3	0.51	0.49	0.75	1.46	-4%
	Pb pct	9	137	0.03	9	2.29	2.13	2.27	0.99	-7%
	Cu pct	3	137	0.00	3	0.35	0.35	0.47	1.32	-2%
mts_p	Zn pct	14	137	0.04	14	3.23	3.18	3.12	0.96	-2%
	As ppm	2500	136	95.00	2500	767	717	681	0.89	-7%
	Sb ppm	3100	136	33.00	3100	1166	973	1343	1.15	-20%
	Fe pct	6	136	0.67	6	3.26	3.11	1.53	0.47	-5%
	Ag ppm	700	13	4.00	700	199	129	310	1.55	-54%
	Au ppm	2	11	0.02	2	0.65	0.41	0.77	1.19	-56%
	Pb pct	3	13	0.05	3	0.9	0.67	1.07	1.19	-34%
mate refuel	Cu pct	0.5	13	0.01	0.5	0.17	0.13	0.19	1.13	-33%
mus_nw1	Zn pct	6	13	0.06	6	1.96	1.35	2.29	1.17	-45%
	As ppm	700	11	64.00	700	374	332	269	0.72	-13%
	Sb ppm	1000	11	54.00	1000	428	329	415	0.97	-30%
	Fe pct	3.5	11	2.08	3.5	3.08	2.98	0.89	0.29	-3%
	Ag ppm	300	11	1.00	300	66	59	126	1.9	-12%
	Au ppm	1	10	0.00	1	0.19	0.13	0.35	1.82	-45%
mts_rfw2	Pb pct	1.1	11	0.00	1.1	0.34	0.26	0.5	1.48	-29%
	Cu pct	0.4	11	0.00	0.4	0.08	0.06	0.14	1.71	-42%
	Zn pct	3.5	11	0.00	3.5	0.7	0.58	1.14	1.62	-20%

Vein	Grade	Top Cut	Count	Minimum	Maximum	Mean	Mean Top Cut	Variance	Std. Dev.	Difference
	As ppm	200	10	26.00	200	115	90	93	0.81	-28%
	Sb ppm	600	10	28.00	600	195	153	313	1.61	-27%
	Fe pct	3	10	1.76	3	2.7	2.65	0.67	0.25	-2%
	Ag ppm	30	3	16.00	30	25	25	7	0.27	0%
	Au ppm	0.1	3	0.03	0.1	0.07	0.07	0.03	0.43	0%
	Pb pct	1.3	3	0.23	1.3	0.72	0.72	0.47	0.66	0%
note rbuul	Cu pct	0.07	3	0.03	0.07	0.06	0.05	0.02	0.4	-7%
IIIIS_IIIW1	Zn pct	2	3	1.26	2	1.6	1.55	0.39	0.24	-3%
	As ppm	250	3	156.00	250	231	225	58	0.25	-3%
	Sb ppm	450	3	175.00	450	315	312	154	0.49	-1%
	Fe pct	3	3	1.61	3	2.47	2.43	0.63	0.26	-1%
	Ag ppm	500	28	1.00	500	139	126	217	1.56	-10%
	Au ppm	1	28	0.00	1	0.22	0.21	0.31	1.4	-3%
	Pb pct	10	28	0.04	10	1.13	1.13	2.34	2.08	0%
unte ubuu?	Cu pct	0.8	28	0.00	0.8	0.17	0.17	0.29	1.73	0%
mts_rnw2	Zn pct	7	28	0.05	7	1.47	1.42	2.34	1.59	-4%
	As ppm	1000	28	42.00	1000	479	391	546	1.14	-22%
	Sb ppm	2500	28	44.00	2500	752	623	1256	1.67	-21%
	Fe pct	4.4	28	1.13	4.4	3.54	3.49	1.04	0.29	-1%
	Ag ppm	500	77	2.00	500	87	86	109	1.25	-1%
	Au ppm	4	59	0.02	4	0.25	0.22	0.98	3.86	-18%
	Pb pct	15	77	0.03	15	2.36	2.28	3.7	1.57	-3%
	Cu pct	4	76	0.00	4	0.49	0.49	0.92	1.86	0%
scs_p	Zn pct	14	77	0.07	14	3.13	3.11	3.82	1.22	-1%
	As ppm	1500	57	33.00	1500	493	488	535	1.09	-1%
	Sb ppm	1000	57	14.00	1000	348	335	404	1.16	-4%
	Fe pct	5	59	1.31	5	3.6	3.53	1.35	0.38	-2%
	Ag ppm	400	35	0.00	400	119	116	141	1.18	-2%
	Au ppm	0.12	16	0.01	0.12	0.08	0.08	0.04	0.56	-4%
	Pb pct	12	35	0.03	12	2.98	2.88	3.3	1.11	-3%
coc rfuul	Cu pct	3	28	0.00	3	0.75	0.71	1.06	1.42	-6%
SCS_HW1	Zn pct	12	35	0.12	12	4.84	4.56	4.41	0.91	-6%
	As ppm	800	16	46.00	800	357	322	319	0.89	-11%
	Sb ppm	1000	16	17.00	1000	318	220	557	1.75	-44%
	Fe pct	5	16	1.63	5	3.77	3.63	1.08	0.29	-4%
	Ag ppm	100	7	5.00	100	30	28	34	1.14	-6%
coc should	Au ppm	0.2	7	0.02	0.2	0.1	0.08	0.09	0.92	-33%
scs_mw1	Pb pct	1.3	7	0.02	1.3	0.54	0.45	0.51	0.95	-22%
	Cu pct	0.1	7	0.01	0.1	0.04	0.04	0.04	0.85	0%

Vein	Grade	Top Cut	Count	Minimum	Maximum	Mean	Mean Top Cut	Variance	Std. Dev.	Difference
	Zn pct	2.5	7	0.04	2.5	0.99	0.78	0.95	0.96	-28%
	As ppm	1200	7	52.00	1200	659	544	362	0.55	-21%
	Sb ppm	700	7	32.00	700	282	220	311	1.1	-28%
	Fe pct	2.5	7	1.61	2.5	2.26	2.16	0.57	0.25	-5%
	Ag ppm	250	16	9.00	250	79	68	71	0.9	-16%
	Au ppm	2	16	0.02	2	0.29	0.28	0.62	2.13	-5%
	Pb pct	5	16	0.47	5	2.05	1.9	1.48	0.72	-7%
60K D	Cu pct	1.5	16	0.04	1.5	0.44	0.41	0.41	0.94	-7%
sor_p	Zn pct	14	16	0.42	14	3.6	3.48	4.05	1.12	-3%
	As ppm	2500	16	78.00	2500	786	541	1190	1.51	-45%
	Sb ppm	1400	16	30.00	1400	510	340	657	1.29	-50%
	Fe pct	4.5	16	2.52	4.5	3.84	3.73	0.82	0.21	-3%
	Ag ppm	200	5	15.00	200	84	84	90	1.07	0%
	Au ppm	0.3	5	0.07	0.3	0.21	0.2	0.09	0.44	-4%
	Pb pct	2	5	0.09	2	1.01	1.01	0.9	0.89	0%
	Cu pct	1	5	0.01	1	0.3	0.3	0.41	1.38	0%
sor_rnw1	Zn pct	3.5	5	0.07	3.5	1.7	1.7	1.58	0.93	0%
	As ppm	600	5	132.00	600	430	395	311	0.72	-9%
	Sb ppm	1000	5	44.00	1000	664	515	836	1.26	-29%
	Fe pct	4.5	5	3.41	4.5	4.45	4.13	0.8	0.18	-8%
	Ag ppm	50	3	22.00	50	37	34	16	0.42	-9%
	Au ppm	0.15	3	0.10	0.15	0.13	0.13	0.03	0.22	-5%
	Pb pct	1	3	0.20	1	0.51	0.46	0.42	0.83	-9%
tua	Cu pct	0.15	3	0.04	0.15	0.08	0.07	0.06	0.74	-6%
tyc_p	Zn pct	2	3	0.42	2	1.07	0.95	0.87	0.82	-12%
	As ppm	180	3	78.00	180	143	140	46	0.32	-1%
	Sb ppm	20	3	15.00	20	25	18	7	0.28	-39%
	Fe pct	4.1	3	3.82	4.1	3.99	3.97	0.14	0.03	-1%

14.7. Variogram analysis

Continuity analysis refers to the analysis of the spatial correlation of a grade value between pairs of samples to determine the principal axis of spatial continuity.

The distribution of the grades has a log-normal distribution, so the experimental variograms tended to be of low quality. To compensate this scenario, the data were transformed into a normal-score distribution for continuity analysis.

Horizontal, cross-sectional, and depth continuity maps of Ag, Zn, Pb, Cu, and Au were examined to determine the directions of highest and lowest continuity. Since each vein has a different strike and dip direction, the analysis was only necessary to determine if a dip direction existed.

The continuity analysis revealed that some veins do not have sufficient data to allow variogram modelling. The author grouped structures that have a relationship according to the SMR geologists' interpretation to present a better variogram, although the quality remains moderate to poor. They were grouped as follows:

- mtc_p, mtc_s1a, mtc_rfw1, mtc_rfw3, mtc_rfw4, mtc_rhw1, mtc_s
- mts_p, mts_rfw1, mts_rfw2, mts_rhw1, mts_rhw2
- **scs_p**, scs_rfw1, scs_rhw1
- **sor_p**, sor_rhw1, tyc_p, **aya_p**

* The main veins are shown in bold, and the others are not.

The construction of the variogram consists of modelling the variograms of the major, semi-major, and minor axes resulting in a mathematical model of the spatial variance by the ordinary kriging estimation method. Important components of the variogram model are the nugget effect and the short-range characteristics. These have the greatest influence on the estimation of the grade.

The nugget effect contains components of inherent variability, sampling error, and analytical error. A high nugget effect indicates a high degree of randomness in the sample grades. The author of this section used the Snowden Supervisor v8.13 software to determine the nugget effect by inspecting the downhole variogram calculated with a lag equal to the length of the composite.

The parameters of the variograms for the mineralized structures of the Reliquias mine are shown in table 14-6.

Vein	Metal	Major axis orientation	С0	C1	Ranges (m)*	C2	Ranges (m)*
	Ag	-016° → 078°	0.282	0.481	6, 20, 10	0.237	231, 40, 20
mtc_p	Au	-008° → 096°	0.226	0.276	6, 20, 10	0.498	54, 40, 20
mtc_s1a mtc_rfw1 mtc_rfw3 mtc_rfw4	Pb	-008° → 096°	0.107	0.402	2, 20, 10	0.491	103, 50, 20
mtc_rhw1, mts_s	Cu	-008° → 084°	0.303	0.26	9, 20, 10	0.437	194, 85, 20
	Zn	-008° → 096°	0.273	0.183	4, 42, 10	0.544	60, 70, 20
	Ag	-010° → 118°	0.233	0.304	7, 20, 10	0.463	77, 53, 20
mts_p	Au	000° → 120°	0.445	0.132	9, 20, 10	0.423	77, 70, 20
mts_rfw1 mts_rfw2	Pb	000° → 120°	0.403	0.341	13, 38, 15	0.256	121, 78, 30
mts_mw1 mts_mw2	Cu	005° → 121°	0.244	0.365	11, 20, 15	0.392	70, 58, 25
	Zn	000° → 120°	0.509	0.322	15, 20, 15	0.169	136, 59, 30
	Ag	-015° → 113°	0.343	0.179	39, 20, 10	0.479	63, 40, 20
sor_p	Au	$000^{\circ} \rightarrow 100^{\circ}$	0.403	0.23	89, 20, 10	0.368	188, 42, 20
sor_rnw1 tyc_p	Pb	-009° → 105°	0.112	0.498	83, 20, 10	0.39	251, 50, 20
aya_p	Cu	$000^{\circ} \rightarrow 100^{\circ}$	0.282	0.239	25, 20, 10	0.479	123, 85, 20
	Zn	$000^{\circ} \rightarrow 100^{\circ}$	0.229	0.212	97, 42, 10	0.559	245, 70, 20
	Ag	-010° → 124°	0.121	0.498	18, 38, 20	0.381	125, 102, 40
scs_p	Au	$000^{\circ} \rightarrow 120^{\circ}$	0.161	0.47	95, 62, 10	0.369	214, 106, 20
scs_rfw1	Pb	000° → 120°	0.168	0.282	12, 19, 10	0.551	118, 88, 20
scs_rnw1	Cu	-020° → 118°	0.295	0.267	9, 20, 10	0.437	194, 85, 20
	Zn	-005° → 120°	0.177	0.328	15, 42, 10	0.495	158, 105, 20
	•	•		•	•		•

Table 14-6 Variogram model parameters.

(*) Spherical model and ranges for major, semi-major, and minor axes respectively.

Figures 14-7, 14-8, 14-9 and 14-10 show the silver variogram models for the main structures grouped in the Reliquias mine.

Figure 14-7 Variography of silver for the mtc_p group.

Figure 14-8 Variography of silver for the mts_p group.

Figure 14-9 Variography of silver for the scs_p group.

Figure 14-10 Variography of silver for the sor_p group.

The author considers that the confidence in the modelled variograms for the mineralized structures is moderate for the main veins, such as mtc_p, msc_p, scs_p, sor_p and poor in the interpreted vein splays, as the number of composites used for the experimental variogram is also poor.

14.8. Grade Estimation

14.8.1. Block Size

The author has determined that the appropriate Selective Mining Unit (SMU) for the mineralized structures at the Reliquias mine is $2m \times 2m \times 2m$. The criteria used for SMU selection were based on the vein geometry, mining method, and type of mining equipment for mineralized structures (greater than 0.50m).

Due to the geometrical characteristics of the mineralized structures (variable widths and undulating zones), an entire block is not spatially located within the wireframe. The author believes it is desirable to divide the SMUs into sub-cells so that the geometry of the vein is fully represented in the block model.

Table 14-7. Sample block model parameters for the Reliquias mine.

Direction	Model Origin	SMU block size (m)	No. of blocks
Easting	473530	2	840
Northing	8538940	2	580
Elevation	4140	2	205

Table 14-7 Parameters of the block model for the Reliquias mine.

14.8.2. Sample Search Parameters

The author used the Kriging Neighbourhood Analysis (KNA) technique to obtain the optimal search parameters for the Mineral Resource estimates, using the Snowden Supervisor v8.13 software tool.

Figure 14-11 shows the results of the KNA analysis for the mtc_p group of veins.

Figure 14-11 Block size, minimum and maximum number of samples, search distances for Reliquias mine veins. Source: The author.

The KNA analysis integrates the regression slope, the kriging efficiency, and the kriging variance. All these parameters and the author's experience in these types of reservoirs determined a search strategy that considers the following aspects:

- The search range of about 50 metres along the strike, 26 metres down dip, and 14 metres along the strike of the mineralized structure.
- 3 to 4 minimum composites per estimate.

• 7 to 14 composites maximum per estimate.

Ordinary Kriging (OK) and Inverse Distance Kriging (IDW) methods were used for the estimation of the grades (Ag, Zn, Pb, Cu, and Au). The dimensions of the search ellipsoid and the anisotropy were based on the orientations obtained from the semivariogram analysis. In addition, the dynamic anisotropy technique was employed, aligning the rotation of the search ellipsoid with the local dip and dip direction of the mineralised veins for each block. Table 14-8 shows the search and estimation parameters for each mineralized structure.

Domain	Rota	ations (de	grees)	Max. Samps.	Ellipsoid I	Dimension	s (meters)	Min samns	Max samns	Pass.														
Domain	Dip	Dip Dir	Pitch	Per Hole	U	v	w	iviiii sumps.	intex sumps.	1 455.														
aya_p	Dynamic		2	50	26	14	3	7	3															
mtc_p	Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		50	26	14	3	12	3								
mtc_rfw1	Dynamic		Dynamic		Dynamic		1 Dynamic		Dynamic		50	26	14	3	12	3								
mtc_rfw3		Dynamic		2	50	26	14	3	12	3														
mtc_rfw4		Dynamio	С	2	50	26	14	3	12	3														
mtc_rhw1		Dynamio	С	2	50	26	14	3	12	3														
mtc_s	Dynamic		Dynamic		Dynamic		50	26	14	3	12	3												
mtc_s1a		Dynamic		Dynamic		Dynamic		2	50	26	14	3	12	3										
mts_p	Dynamic		Dynamic		Dynamic		Dynamic		50	26	14	4	14	3										
mts_rfw1	Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		50	26	14	4	14	3		
mts_rfw2	Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		Dynamic		50	26	14	4	14	3
mts_rhw1	Dynamic		Dynamic		s_rhw1 Dynar		С	2	50	26	14	4	14	3										
mts_rhw2		Dynamie	С	2	50	26	14	4	14	3														
scs_p		Dynamie	C	2	50	26	14	3	12	3														
scs_rfw1		Dynamie	С	2	50	26	14	3	12	3														
scs_rhw1		Dynamie	С	2	50	26	14	3	12	3														
sor_p		Dynamie	c	2	50	26	14	3	7	3														
sor_rhw1	Dynamic		Dynamic 2		50	26	14	3	7	3														
tyc_p		Dynamio	c	2	50	26	14	3	7	3														

 Table 14-8 Parameters for the estimation of the veins of the Reliquias mine.

14.8.3. Dynamic Anisotropy

Dynamic Anisotropy is a tool (Datamine StudioRM software) that the author used to optimise the estimation. This technique allows to consider the gradual undulations or changes of orientation of the structure at the time of estimation. To do so, it is necessary to assign the dip and dip direction of the structure in each block model. The determination of this information is based on the orientation of the footwall and hanging wall of each mineralized structure. All these values are used to tailor the variogram orientation and search parameters during estimation in each block of each mineralized structure. Figure 14-12 shows the variation of the inclination of the block model for the mtc_p vein.

Figure 14-12 Distribution within the block model of the dip for the mtc_p vein. Source: The author.

14.8.4. Density

SMR took a total of 70 samples for density measurements as of December 15th, 2022. Within the mineralized structures only a total of 35 samples were obtained for density analysis. Extreme values that were considered not representative of the sample population were discarded reducing the total number of density measurements used in the analysis to 32 samples. Due to insufficient spatial coverage of the density measurements, the estimation is considered inadequate, as it is not possible to estimate density with only a few samples. Subsequently, the average density value was determined and applied to all vein blocks, and the density used was 2.76 t/m3 (Table 14-9).

Vein	No. of samples	Mean (t/m³)	Minimum (t/m³)	Maximum (t/m ³)	Variance
All Density	70	2.66	2.44	3.19	0.03
Inside the Veins	32	2.76	2.44	3.41	0.05

Table 14-9 Statistical summary of the relics mine density tests.

Figure 14-13 shows the histogram for the samples within the mineralized structures of the Reliquias mine.

Figure 14-13 Histogram of the samples within the mineralized structures.

14.9. Validation of the Estimate

The estimated models were verified by statistical comparison methods and visual inspections by projecting the block model and composited samples for each vein in cross-sectional and plan views.

14.9.1. Visual Inspection

According to the visual checks, the author confirmed that the estimated grades are within the wireframes defined by SMR. Therefore, the visual validation performed in Datamine StudioRM software confirmed that there is a correlation between the composite grades and the estimated blocks for each element.

14.9.2. Local Validation of the Estimate

The local validation was estimated using the Snowden Supervisor v8.13 software. Level slices were generated to show the relative grade distribution of east- and north-facing blocks by elevation, parallel to strike and perpendicular to strike. These plots compare the nearest neighbour model with the OK/IPD model to ensure that the grade is not drastically overestimated or underestimated in any specific direction. Figures 14-14 shows the silver distribution for the mtc_p, in different directions and levels.

Figure 14-14 Slice validation plot of the mtc_p vein.

14.9.3. Cross Validation

This technique consists of excluding a sample point and estimating a grade in its place, using the remaining compounds. This process is repeated for all compounds that are used for estimation. The estimated average grade is compared to the actual average grade of the compounds, as Table 14-10 shows:

Main	Ag (ppm)			Au (p	pm)		Pb (%)		Cu (%)			Zn (%)		
vein	Comp	ОК	Diff	Comp	ОК	Diff	Comp	ОК	Diff	Comp	ОК	Diff	Comp	ОК	Diff
aya_p	116	118	-2	0.09	0.09	0.00	2.00	1.75	0.26	0.55	0.55	0.00	2.62	2.39	0.22
mtc_p	84	85	-2	0.30	0.29	0.01	2.57	2.54	0.03	0.36	0.37	-0.01	3.86	3.88	-0.02
mtc_rfw1	67	69	-2	0.14	0.15	0.00	2.31	2.48	-0.16	0.32	0.37	-0.04	4.15	4.20	-0.05
mtc_rfw3	68	66	1	0.15	0.15	0.00	3.37	3.27	0.10	0.43	0.41	0.02	4.75	4.98	-0.23
mtc_rfw4	42	48	-7	0.08	0.08	0.00	1.76	1.14	0.62	0.30	0.32	-0.02	5.98	3.00	2.98
mtc_rhw1	108	121	-14	0.35	0.36	0.00	4.61	5.49	-0.88	1.58	0.94	0.64	7.75	5.74	2.01
mtc_s	39	39	0	0.08	0.09	0.00	0.93	0.94	-0.01	0.09	0.08	0.01	1.14	1.07	0.07
mtc_s1a	112	107	4	2.06	3.25	-1.18	1.71	1.90	-0.20	0.18	0.16	0.01	2.27	2.52	-0.25
mts_p	232	239	-7	0.48	0.49	-0.01	2.28	2.33	-0.04	0.35	0.36	0.00	3.21	3.29	-0.09
mts_rfw1	253	270	-17	1.20	1.40	-0.20	1.46	1.78	-0.32	0.28	0.28	0.00	3.42	4.20	-0.78
mts_rfw2	216	142	74	0.68	0.33	0.35	1.17	0.77	0.40	0.29	0.21	0.08	2.73	1.90	0.83
mts_rhw1	130	223	-94	0.26	0.71	-0.45	1.86	7.44	-5.59	0.55	0.38	0.16	11.20	13.11	-1.91
mts_rhw2	241	229	12	0.42	0.46	-0.04	2.19	2.08	0.11	0.32	0.35	-0.02	2.82	2.53	0.29
scs_p	86	85	1	0.19	0.14	0.05	2.27	2.40	-0.13	0.46	0.48	-0.02	3.04	3.22	-0.18
scs_rfw1	221	221	-1	0.15	0.15	0.00	5.77	6.03	-0.25	1.47	1.44	0.03	9.24	9.87	-0.63
scs_rhw1	57	70	-13	0.18	0.22	-0.04	1.06	1.29	-0.23	0.08	0.09	-0.01	1.90	2.26	-0.36
sor_p	81	74	7	0.25	0.25	0.00	1.96	2.00	-0.04	0.42	0.41	0.01	3.37	3.42	-0.05
sor_rhw1	74	75	0	0.17	0.18	-0.01	0.97	0.97	0.00	0.10	0.21	-0.11	1.19	1.65	-0.46
tyc_p	22	40	-18	0.10	0.14	-0.04	0.23	0.56	-0.34	0.04	0.09	-0.06	0.42	1.21	-0.79

Table 14-10 Cross validation for each mineralized vein of the Reliquias mine.

14.9.4. Global Estimation Validation

The global validation of the estimate involves comparing the average Ordinary Kriged grade (OK) for each vein with the average grade generated using the Nearest Neighbour (NN) estimate.

The author performed this analysis for each mineralized structure in order to show that low-confidence areas do not distort the results of higher-confidence regions. The results for the classified blocks are considered reasonable as the main elements for this type of deposit fluctuate between $\pm 15\%$. Those above this value are generally due to the presence of isolated high-grade composited samples or low overall grade concentrations, as in the case of mainly copper and gold. Table 14-11 shows the average comparison of grades for vein estimated by OK vs. average NN.

		Silver		Gold			Lead			Copper			Zinc		
Vein	Ag OK	Ag NN	Diff	Au OK	Au NN	Diff	Pb OK	Pb NN	Diff	Cu OK	Cu NN	Diff	Zn OK	Zn NN	Diff
aya_p	77	71	-8%	0.06	0.07	14%	0.93	1.09	15%	0.28	0.31	9%	1.26	1.46	14%
mtc_p	39	36	-8%	0.13	0.13	4%	1.34	1.32	-1%	0.16	0.13	-22%	1.81	1.81	0%
mtc_rfw1	34	33	-3%	0.07	0.07	2%	1.12	1.11	-1%	0.15	0.15	0%	1.77	1.72	-3%
mtc_rfw3	34	36	6%	0.07	0.07	-2%	2.08	2.11	1%	0.23	0.28	0.17	2.62	2.61	0.00
mtc_rfw4	26	31	17%	0.03	0.04	3%	0.82	1.05	22%	0.17	0.18	7%	2.53	3.63	30%
mtc_rhw1	73	87	16%	0.16	0.18	12%	1.82	1.81	-1%	0.76	0.90	15%	3.25	3.32	2%
mtc_s	35	32	-8%	0.07	0.07	-4%	1.06	1.07	1%	0.11	0.11	2%	1.31	1.32	0%
mtc_s1a	54	58	7%	0.52	0.39	-32%	0.86	0.98	12%	0.06	0.07	10%	0.83	0.89	6%
mts_p	88	67	-32%	0.19	0.22	14%	0.83	0.65	-27%	0.16	0.15	-8%	1.32	1.16	-13%
mts_rfw1	135	123	-10%	0.49	0.32	-53%	0.72	0.58	-24%	0.14	0.14	-4%	1.56	1.16	-35%
mts_rfw2	46	77	40%	0.13	0.21	40%	0.25	0.47	46%	0.05	0.07	37%	0.52	0.94	45%
mts_rhw1	12	13	3%	0.04	0.04	9%	0.33	0.36	8%	0.03	0.03	-5%	0.81	0.81	0%
mts_rhw2	140	174	20%	0.27	0.30	12%	1.90	3.37	44%	0.21	0.26	19%	2.58	2.83	9%
scs_p	58	58	1%	0.11	0.11	1%	1.18	0.94	-25%	0.26	0.23	-12%	1.52	1.32	-15%
scs_rfw1	45	34	-33%	0.05	0.05	2%	1.28	0.94	-36%	0.16	0.11	-40%	2.38	1.91	-24%
scs_rhw1	24	16	-52%	0.08	0.05	-45%	0.47	0.24	-101%	0.04	0.04	-3%	0.80	0.49	-63%
sor_p	57	56	-2%	0.28	0.16	-83%	1.63	1.62	0%	0.29	0.25	-18%	2.24	1.87	-20%
sor_rhw1	57	32	-77%	0.17	0.12	-39%	0.75	0.40	-90%	0.16	0.07	-117%	1.30	0.60	-119%
tyc_p	17	18	6%	0.06	0.06	2%	0.21	0.24	13%	0.03	0.04	11%	0.38	0.42	10%

Table 14-11 Statistical summary of the global validation for each vein of the Reliquias mine and without cut-off.

The author observes that the validations carried out, as well as the cross and the global validation, show significant differences due to the number of samples and the variability of the values or results of the laboratory. The variability of the estimation results in the majority of the vein splays, does not help to have a representativeness of the grades of Ag, Zn, Pb, Cu, and Au. These results will be considered for the classification and declaration of mineral resources.

14.10. Mineral Resource Reporting

14.10.1. Mineral Resource Classification

Mineral Resources have been classified as measured, indicated, and inferred by semiquantitative, semi-qualitative methods, taking into account the following aspects:

- QA/QC procedures and results of QA/QC programmes.
- Current geological knowledge of the deposit.

- Continuity of mineralization.
- Quality and quantity of data generated by SMR.
- Drill hole spacing.
- Historically mined areas.
- Search passes and volumes at which each block was estimated.
- Analysis of the results of the estimation validation.
- Average distances from data to block estimates.

14.10.2. Mineral Resource depletion

Mined-out areas have been excluded from any tonnage and grade reporting in this technical report. The author believes that the methodology for representing already exploited areas for this report is adequate. However, a protocol needs to be developed to properly treat this information so that mined-out sectors can be correctly accounted for.

Figures 14.-15, 14-16, 14-17 shows the location of the mined zones of the mtc_p, mts_p and scs_p veins. Source: The author.

Figure 14-15 Longitudinal section showing – depletion due to mined areas for the MTS_P vein.

Figure 14-16 Longitudinal section showing – depletion due to mined out areas for the MTS_P vein.

Figure 14-17 Longitudinal section showing – depletion due to mined out areas for the SCS_P vein.

14.11. Reasonable Prospects for Eventual Economic Extraction

14.11.1. Net Smelter Royalty Returns

The definition of the estimated NSR factors and its inclusion in the block model is considered an important step of the review and definition between RREMIN and SMR because the NSR value is the optimization field, affecting the mineral resource declaration results reported in this document. The development of the NSR information has been verified by Mr. Gerardo Acuna, Chartered Professional in the discipline of Mining Member Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM), Registered Member FAusIMM (CP) 337049, Senior Engineer, who is a Qualified Person as such term is defined in NI 43-101.

The metallurgical parameters that were considered to determine the NSR have been calculated following best industry practice. The data used was verified and a comparison was also made between what is currently available and the historical records that SMR has obtained from Corporación Minera Castrovirreyna for the years 2006 and 2016.

Metal price forecasts have been estimated using Broker and Consensus Metal Prices. The consensus prices used for the NSR estimate are for Silver US\$23.29/oz, Copper US\$4.28/lb, Zinc US\$1.28/lb, and Lead US\$0.99/lb.

The commercial terms that SMR obtained in draft form have also been used. This information was reviewed by the QP for this section and has been included in the NSR determination.

NSR is calculated by the formula:

NSR = 15.56* Ag + 14.03* Zn + 16.27*Pb + 72.11*Cu

Equivalent Silver (Ag_Eq) is calculated by the formula:

Ag_Eq = Ag + 0.90* Zn + 1.05*Pb + 4.63*Cu

14.11.2. Cut-Off

Cut-off expressed in US\$/dmt has been estimated using predicted costs that companies with operations similar to SMRs are currently reporting. These costs reflect the variable opex of the mining, process plant, and general and administrative services areas, which include the transportation of the concentrate to the shipping port. It is important to highlight that the mining operation involves mechanization, third-party services, and exploitation using long holes. These inputs are the ones that make it possible to project low costs for the operations. The calculation used in the cut-off has been verified by Mr. Gerardo Acuna, Chartered Professional in the discipline of Mining Member Fellow of the

Australasian Institute of Mining and Metallurgy (AusIMM), Registered Member FAusIMM (CP) 337049, Senior Engineer, who is a Qualified Person as such term is defined in NI 43-101. The variable operating costs for the Reliquias polymetallic vein mine are shown in Table 14-12.

	Variable Costs (US\$/dmt)
Mining	16.46
Process Plant	11.51
G&A / Admin	0.26
Concentrate transport	8.12
CUT-OFF	US\$/ 36.34

Table 14-12 Variable costs for extraction of polymetallic vein material from the Reliquias mine.

14.12. Mineral Resource statement

Mr. Antonio Cruz (MAIG) is the independent Qualified Person in charge of the mineral resource estimation of the Reliquias mine of Sociedad Minera Reliquias. The mineral resources stated below have an effective date of March 18th, 2023.

The mineral resources for the polymetallic veins are summarized in Table 14-13. Mineral Resources are reported as undiluted and in situ in areas identified as accessible for underground production with NSR values greater than US\$ 36.34.

		1									
Category	Tonnes	Ag	Au	Zn	Pb	Cu	Contained	Contained	Contained	Contained	Contained
	(t)	(g/t)	(g/t)	(%)	(%)	(%)	Ag (oz)	Au (oz)	Zn (t)	Pb (t)	Cu (t)
Measured	107,300	104.87	0.34	3.45	2.27	0.29	361,800	1,200	3,700	2,400	300
Indicated	754,000	99.89	0.25	3.33	2.53	0.41	2,421,400	5,900	25,100	19,000	3,100
M + I	861,300	100.51	0.26	3.35	2.49	0.40	2,783,200	7,100	28,800	21,400	3,400
Inferred	969,000	99.60	0.21	2.71	1.94	0.34	3,103,000	6,600	26,100	18,800	3,300

Table 14-13 Mineral Resources for the polymetallic veins, effective date March 18th, 2023.

Notes:

- Mineral Resources are those defined considering the CIM Standards on Mineral Resources and Mineral Reserves, 2014.
- Mineral Resources have an effective date of March 18, 2023. Antonio Cruz Bermúdez is the independent qualified person responsible for the Mineral Resources estimate.

- The Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability.
- There is no certainty that all or part of the estimated Mineral Resources will be converted to Mineral Reserves.
- Mineral Resources are reported at US\$36.34 NSR cut-off for the polymetallic veins and the prices of the metals considered were US\$23.30/oz, Copper US\$4.28/lb, Zinc US\$1.28/lb, and Lead US\$0.99/lb.
- Metallurgical recoveries for polymetallic veins are based on historical recovery by CMC: Ag= 73.00%, Pb= 83.00%, Zn= 71.00%, Cu= 85.00.
- The average density was calculated for all the veins and the average value used for the calculation of tonnage is 2.76 t/m³.
- Mineral Resource tonnes are rounded to the nearest thousand and totals may not add due to rounding.
- The reported Mineral Resources are not diluted.
- The Mineral Resources reported do not include mined-out areas.
- Antonio Cruz is not aware of any environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues that could materially affect the potential development of the Mineral Resource Estimate.

Cotocom	Vain	Tonnes	Ag	Au	Zn	Pb	Cu	Contained	Contained	Contained	Contained	Contained
Category	vein	(T)	(g/t)	(g/t)	(%)	(%)	(%)	Ag (oz)	Au (oz)	Zn (t)	Pb (t)	Cu (t)
	mtc_p	81,500	68.46	0.30	3.45	2.23	0.25	179,400	800	2,800	1,800	200
Measured	mts_p	25,800	219.91	0.47	3.46	2.40	0.39	182,400	400	900	600	100
	Total	107,300	104.87	0.34	3.45	2.27	0.29	361,800	1,200	3,700	2,400	300
	aya_p	9,600	59.65	0.09	2.81	2.27	0.15	18,400	-	300	200	-
	mtc_p	409,100	72.80	0.21	3.38	2.64	0.37	957,500	2,700	13,800	10,800	1,500
Indicated	mts_p	77,000	252.48	0.50	3.16	2.13	0.36	625,000	1,200	2,400	1,600	300
Indicated	mts_rhw2	5,400	95.17	0.17	0.78	0.65	0.11	16,500	-	-	-	-
	scs_p	252,900	98.89	0.25	3.39	2.51	0.50	804,000	2,000	8,600	6,400	1,300
	Total	754,000	99.89	0.25	3.33	2.53	0.41	2,421,400	5,900	25,100	19,000	3,100
	aya_p	169,800	140.79	0.10	2.43	1.92	0.53	768,600	600	4,100	3,300	900
	mtc_p	286,100	56.27	0.20	3.02	2.28	0.27	517,500	1,800	8,600	6,500	800
	mts_p	88,800	172.88	0.35	2.61	1.61	0.31	493,600	1,000	2,300	1,400	300
	mts_rfw1	27,500	137.78	0.56	1.81	0.77	0.14	121,800	500	500	200	-
	mts_rfw2	18,900	81.50	0.14	0.66	0.33	0.05	49,500	100	100	100	-
Informed	mts_rhw2	12,000	178.51	0.33	1.95	1.61	0.23	68,900	100	200	200	-
merred	scs_p	184,200	117.68	0.23	2.85	2.13	0.42	696,900	1,400	5,200	3,900	800
	scs_rfw1	68,600	72.74	0.06	3.71	2.01	0.34	160,400	100	2,500	1,400	200
	scs_rhw1	4,300	36.30	0.12	1.24	0.72	0.05	5,000	-	100	-	-
	sor_p	82,900	67.62	0.33	2.61	1.88	0.34	180,200	900	2,200	1,600	300
	sor_rhw1	25,900	48.73	0.17	1.25	0.72	0.12	40,600	100	300	200	-
	Total	969,000	99.60	0.21	2.71	1.94	0.34	3,103,000	6,600	26,100	18,800	3,300

Table 14-14 Mineral Resources for the polymetallic veins, effective date March 18th, 2023.

The QP for the Mineral Resources of the Reliquias Mine believes that the estimate, based on drilling and channel data, from the 2022 programme carried out by SMR, has been carried out following best industry practices and CIM (2014) requirements. In addition, the author considers that the resource assessment is based on actual mining, processing, and smelting costs, historical metallurgical recoveries, and long-term metal prices applying a reasonable cut-off value (NSR). Thus, mineral resources have "reasonable prospects for eventual economic extraction."

15. Mineral Reserve Estimate

This section is not applicable to this Report.

16. Mining Method

This section is not applicable to this Report.

17. Recovery Methods

This section is not applicable to this Report.

18. Project Infrastructure

This section is not applicable to this Report.

19. Market Studies and Contracts

This section is not applicable to this Report.

20. Environmental Studies, Permitting and Social or Community Impact

This section is not applicable to this Report.

21. Capital and Operating Costs

This section is not applicable to this Report.

22. Economic Analysis

This section is not applicable to this Report.

23. Adjacent Properties

This section is not applicable to this Report.

24. Other Relevant Data and Information

This section is not applicable to this Report.

25. Interpretation and Conclusions

25.1. Mining Property, Surface Rights and Permits

The Reliquias mine is located within a total of 239 concessions, which do not have any legal problems, and the payments of concession fees are duly verified. In addition, the mineralized structures exploited by Corporacion Minera Castrovirreyna are within the concessions acquired by Sociedad Minera Reliquias. There is no risk that the surface projections of the veins are outside the limits of the mining property, and the exploration drilling program has been carried out within the mine workings.

There are only two communities that own the surface rights. These communities have historically had a good relationship with Corporacion Minera Castrovirreyna. Sociedad Minera Relquias' community relations and property area maintains effective communication with the communities.

Sociedad Minera Reliquias has a valid water use license (535,272 m3 per year) from the Lopezcocha and Orccococha lagoons. The company also has a permit from 2010 and an updated permit to start mining operations.

Concerning royalties, Sociedad Minera Reliquias has no royalty commitments or economic agreements with public or private companies. According to the Peruvian law, a royalty is paid to the Peruvian government on production that varies between 1 and 3% of the sales value of the minerals being mined.

Access to the Reliquias Mine from the city of Lima is via a fully paved road and has adequate infrastructure for an underground mining operation.

25.2. Geology and Exploration

The Reliquias Mine is located in the Castrovirreyna mining district. The geological setting is constituted by volcanic sequences of the Caudalosa Formation (flows and flow breccias with intercalation of tuffaceous sandstones) and the Castrovirreyna Formation (lavas, volcanic agglomerates, pyroclastic sequences, and tuffs and sandy siltstones).

The mineralized structures are aligned following three dominant structural patterns: i) East-West system (Matacaballo seam), ii) NW-SE system (Sacasipuedes, Meteysaca, and Perseguida veins), iii) NE-SW system. The main structures have a width ranging from 0.50 to 3.0 meters and are recognized along strike up to 2 km (Matacaballo vein).

Mineralization includes silver sulphosalts (proustite–pyrargyrite or ruby silver), silver-rich galena, sphalerite, chalcopyrite, and pyrite. Gangue minerals include quartz, barite, stibnite, and rhodochrosite.

According to the geological characteristics and the type of mineralization that is present in the mineralized structures at the Reliquias mine, the project can be characterized as an epithermal deposit of the Intermediate Sulphidation subtype.

The exploration objectives were aimed at evaluating the geological potential of the numerous veins that exist in and around the Reliquias mine. Reconnaissance and verification of veins have been carried out in 6 zones. The geochemical results of rock chip samples confirm the existence of a high silver content characteristic of polymetallic veins in the Castrovirreyna mining district.

25.3. Drilling, Sample Preparation and Data Verification

Sociedad Minera Reliquias has developed adequate protocols and procedures for drilling activities, quality control and quality assurance (QA/QC). The results of standard reference samples as well as control samples, blanks and duplicate samples reveal adequate sampling management and sample preparation.

25.4. Mineral Resources

Mineral Resource estimates were conducted under CIM definitions and comply with all mineral resource disclosure requirements of NI 43-101.

Drill holes to investigate the major structures are adequately spaced for a Mineral Resource estimate. For the Matacaballo vein, the drill grid averages 40 metres with 46 drill holes. For the Meteysaca structure, it averages 50 metres including 11 drill holes. And for the Sacasipuedes vein, it averages 45 metres with 23 drill holes.

The dimensions of the selective mining unit are $2m \times 2m \times 2m$ and are determined by the geometry of the veins, mining method, and type of mining equipment for the exploitation of mineralized structures (with widths greater than 0.50 m).

Estimates have been made for five main veins and 14 splays, which have average widths from 0.1 to 2 metres.

The classification of the resources was defined under three considerations: qualitative characteristics, validation of the estimation, and the method of search volumen. It is classified as follows:

- Measured: distance between 25 and 30 metres.
- Indicated: distance between 55 and 60 metres.
- Inferred: distance between 80 and 90 metres.

25.5. Risks and Opportunities

25.5.1. Opportunities

- Increase mineral resources in the short term with the different splays associated with the main mineralized structures.
- Increase mineral resources in the medium to long term by including the mineralized structures identified in the exploration program around the Reliquia mine.
- Identify zones of high grade of silver, lead, zinc, copper and gold in the main structures at depth in all veins.
- Optimize exploration drilling and infill programs through the main structural controls related to mineralization.

25.5.2. Risks

- Moderate decrease in silver grades at depth, impacting the mineral value; the mitigation for this risk is to define and carry out exploration and drilling programs in mineralized structures close to the surface with higher grades of silver.
- Different zones that were drilled in the mineralized structures do not have density tests, this could generate a moderate increase or decrease in tonnage; the mitigation for this risk is to complete density testing of all samples within mineralized structures.

26. Recommendations

26.1. Geology, Mineralization and Exploration

After the exhaustive research, the authors propose the following recommendations:

- To carry out a lithological-structural mapping at a scale of 1:1000 to determine the real extensions of the existing structures in the Reliquias mine area.
- To construct a lithological model of all local volcanic sequences to correlate them to the mineralized structures and determine areas of potential bonanza grades.
- To elaborate a detailed structural model at deposit scale in order to understand and classify the mineralized structures and correlate them to local tectonic events.
- To define high grades zones and possible flow directions of economic elements to guide future drilling.

26.2. Database, QA/QC and Resources estimates

Recommendations regarding the database, QA/QC and resources estimates are the following:

- To implement an integrated system for the administration and management of geological data and laboratory results.
- To store geological, geotechnical data, laboratory results, and QA/QC programs in relational databases (Access, SQL, etc.).
- To implement equipment (precision balance, sample drying system, etc.) for density testing of all samples sent to the geochemical laboratory. These tests will allow to assign with greater certainty the average density for each mineralized structure.
- To consider drill grid sizes in the range of 30 to 45 metres for mineral resources. This will depend on the mineralized structure and the continuity of the economically mineable zones.
- To complete drilling in Indicated and Inferred zones in order to recategorise them as measured resources with drill diameters between NQ and BQ.

27. References

Ausenco Peru, 2021: NI 43-101 Exploration Assessment Report.

Canadian Institute of Mining, Metallurgy and Petroleum (CIM), 2014: CIM Definition Standards – for Mineral Resources and Mineral Reserves, prepared by the CIM Standing Committee on Reserve Definitions: adopted by the CIM Council, May 2014.

Cruz A., 2021: National Instrument 43-101 Technical Report, Castrovirreyna Project, August 17, 2021.

Carlotto, V., Quispe, J. Rodriguez, R., Boñ. Soc. Geol. Peru: GEOTECTONIC DOMAINS AS TOOL FOR METALLOGENETIC MAPPING IN PERU, 2009.

INGEMMET, Boletin Serie L, Actualizacion Carta Geologica nacional (Escala 1: 50,000): Geologia del cuadrángulo de Castrovirreyna (hojas 27m1, 27m2, 27m3, 27m4), Lima, 2021.

International Council on Mining & Metals (ICMM), CRIRSCO: INTERNATIONAL REPORTING TEMPLATE for the public reporting of EXPLORATION TARGETS, EXPLORATION RESULTS, MINERAL RESOURCES AND MINERAL RESERVES, November 2019.

James M. Wise, Donald C. Noble: Structural and Stratigraphic Relations Between the Rigid Coastal Batholith Block and The Highland Mobile Belt and Their Association with Magmatism and Caldera Formation, February 2014.

Martel, I.: Estudio structural de la zona San Genaro, mina San Genaro-Huancavelica, Perú, 2006.

Pantaleyev, A., 1996: Epithermal Au-Ag: Low Sulphidation: in Selected British Columbia Mineral Deposit Profiles, Volume 2, D.V. Lefebure and T. Höy, eds, British Columbia Ministry of Energy, Mines and Petroleum Resources, pp. 41–43.

Rodriguez, R. (2008): "El Sistema de Fallas Chonta y sus Implicancias Metalogenéticas entre 12º15´ S y 13º30´ S (Huancavelica – Perú)", September 2008.

Wang, L. (2019): Ore Geology Reviews, Volume 107, April 2019 – Elsevier: A review of intermediate sulfidation epithermal deposits and subclassification, pp. 434-456.

Wise, J. (2005): Undulatory Silver-Rich Polymetallic Veins of the Castrovirreyna District, Central Peru: Fault Growth and Mineralization in a Perturbed Local Stress Field, Society of Economic Geology, pp. 689-705.

28. Certificates

I, Antonio Cruz Bermudez (MAIG), do hereby certify that:

- 1. I am a professional engineer and an independent consultant (Lima-Peru) and have an address at Jr. Bernardo Monteagudo No 300, Los Norgales, Comas, Lima.
- 2. I am the author or co-author for the items set out below in the report titled, National Instrument 43-101 Technical Report Mineral Resources Estimate for the Religuias Mine, Huancavalica-Peru (the "Technical Report"), dated February 17, 2023 and with an Effective Date of December 16, 2022.
- 3. I am a registered member of the Australian Institute of Geoscientists (AIG), member number MAIG #7065 and the Australasian Institute of Mining and Metallurgy (AusIMM), member number MAusIMM # 3056028. I graduated from the Universidad Mayor de San Marcos (Lima-Peru) in 2007 with a BSc Geology Engineering. I am a member, in good standing, of Association of Psiiirofessional Engineers of Peru (Colegio de Ingenieros del Peru), License Number 207806, where I am registered as a Professional Geological engineer from 2011. I am a member, in good standing, of Association of Professional Engineers of Peru (Colegio de Ingenieros del Peru), License Number 207806, where I am registered as a Professional Geological engineer from 2011. I have practiced my profession continuously since 2007 and I have relevant work experience in Mineral Resource Estimation and Mine Geology of VMS (Volcanic Massive Sulfides), replacement, polymetallic deposits and other vein deposits. I also hold a Masters degree in Administration and Project Management from UPC (Universidad Peruana de Cienclas Aplicadas), Lima Peru and a Postgraduate Diploma in Geostatistics applied to the evaluation of Mineral Resources from BS Grupo Lima 2013. I have read the definition of "Qualified Person" set out in National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the proposes of NI 43-101.
- 4. I visited the Reliquias Mine on January 26 27, 2023 and September 13 14, 2021.
- 5. I am responsible for items 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26 of the Technical Report.
- 6. I am independent of Silver Mountain Resources applying all of the tests in Section 1.5 of NI 43-101 Form 43-101F1 and Companion Policy 43-101CP; and prior to my engagement with respect to preparation of the Technical Report I had no prior involvement with the Religuias Mine project.
- 7. I have had a previous relationship with the property that is the subject of the Technical Report as an independent Qualified Person
- 8. I have read NI 43-101, Form 43-101F1 and confirm the Technical Report has been prepared in compliance with that instrument and form.
- 9. As of the Effective Date of the Technical Report, to the best of my knowledge, information and belief, the Sections of the Technical Report for which I am responsible contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Signed at Lima, Perú this 27th day of March 2023.

New Bennie

Antonio Cruz Bermudez (MAIG)

I, Mr. Gerardo Acuña Perez, P.Eng., FAusIMM (CP), do hereby certify that:

- 1. I am a Professional Mining Engineer and an independent consultant with an address at La Aperos #262, Dpt #301 La Molina, Lima, Peru.
- 2. I am the author or co-author for the items set out below in the report titled, National Instrument 43-101 Technical Report Mineral Resources Estimate for the Reliquias Mine, Huancavalica-Peru (the "Technical Report"), dated February 17, 2023 and with an Effective Date of December 16, 2022.
- 3. I graduated from the National University of the Center of Peru, received my Bachelor of Science Degree in Mining in 2009 and received my Degree in Professional Mining Engineering in 2009.
- 4. I am a registered as a Professional Mining Engineer in the College of Engineers of Peru with code 123164 from 2011 (P.Eng.), practicing as a Chartered Professional in the discipline of Mining Member Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM), Registered Member FAusIMM (CP) #337049, who is a Qualified Person as such term is defined in NI 43-101.
- 5. I have worked in the minerals industry for 15 years and I have been directly involved in evaluation of resources and reserves, and design and operation of mines and other underground facilities in silver, copper, gold, lead, and zinc, in Perú (La Libertad, Junin y Cerro de Pasco), Colombia (Antioquia) and Ecuador (Zamora Chinchipe in southeast Ecuador, and Toachi southwest of Quito).
- 6. I have read the definition of "Qualified Person" set out in National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 7. I am responsible for the preparation of sections 3, 4 and 13 of the Technical Report.
- 8. I am independent of Silver Mountain Resources applying all of the tests in Section 1.5 of NI 43-101 Form 43-101F1 and Companion Policy 43-101CP.
- I am independent of Silver Mountain Resources applying all of the tests in Section 1.5 of NI 43-101 Form 43-101F1 and Companion Policy 43-101CP; and prior to my engagement with respect to preparation of the Technical Report I had no prior involvement with the Reliquias Mine project.
- 10.I have had no prior involvement with the project that is the subject of the Technical Report.
- 11.I have read NI 43-101, Form 43-101F1 and confirm the Technical Report has been prepared in compliance with that instrument and form.
- 12. As of the Effective Date of the Technical Report, to the best of my knowledge, information and belief, the Sections of the Technical Report for which I am responsible contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Signed at Lima, Peru this 27th day of March 2023.

Gerardo Acuña Perez, FAusIMM (CP)